summaryrefslogtreecommitdiff
path: root/lib/functions.py
blob: fd9063fda50bc42274f051d0f738b52f69200e52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from itertools import chain, combinations
import numpy as np
import re
from scipy import optimize
from utils import is_numeric

arg_support_enabled = True

def powerset(iterable):
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

class ParamFunction:

    def __init__(self, param_function, validation_function, num_vars):
        self._param_function = param_function
        self._validation_function = validation_function
        self._num_variables = num_vars

    def is_valid(self, arg):
        return self._validation_function(arg)

    def eval(self, param, args):
        return self._param_function(param, args)

    def error_function(self, P, X, y):
        return self._param_function(P, X) - y

class AnalyticFunction:

    def __init__(self, function_str, parameters, num_args, verbose = True, regression_args = None):
        self._parameter_names = parameters
        self._num_args = num_args
        self._model_str = function_str
        rawfunction = function_str
        self._dependson = [False] * (len(parameters) + num_args)
        self.fit_success = False
        self.verbose = verbose

        if type(function_str) == str:
            num_vars_re = re.compile(r'regression_arg\(([0-9]+)\)')
            num_vars = max(map(int, num_vars_re.findall(function_str))) + 1
            for i in range(len(parameters)):
                if rawfunction.find('parameter({})'.format(parameters[i])) >= 0:
                    self._dependson[i] = True
                    rawfunction = rawfunction.replace('parameter({})'.format(parameters[i]), 'model_param[{:d}]'.format(i))
            for i in range(0, num_args):
                if rawfunction.find('function_arg({:d})'.format(i)) >= 0:
                    self._dependson[len(parameters) + i] = True
                    rawfunction = rawfunction.replace('function_arg({:d})'.format(i), 'model_param[{:d}]'.format(len(parameters) + i))
            for i in range(num_vars):
                rawfunction = rawfunction.replace('regression_arg({:d})'.format(i), 'reg_param[{:d}]'.format(i))
            self._function_str = rawfunction
            self._function = eval('lambda reg_param, model_param: ' + rawfunction)
        else:
            self._function_str = 'raise ValueError'
            self._function = function_str

        if regression_args:
            self._regression_args = regression_args.copy()
            self._fit_success = True
        elif type(function_str) == str:
            self._regression_args = list(np.ones((num_vars)))
        else:
            self._regression_args = []

    def get_fit_data(self, by_param, state_or_tran, model_attribute):
        dimension = len(self._parameter_names) + self._num_args
        X = [[] for i in range(dimension)]
        Y = []

        num_valid = 0
        num_total = 0

        for key, val in by_param.items():
            if key[0] == state_or_tran and len(key[1]) == dimension:
                valid = True
                num_total += 1
                for i in range(dimension):
                    if self._dependson[i] and not is_numeric(key[1][i]):
                        valid = False
                if valid:
                    num_valid += 1
                    Y.extend(val[model_attribute])
                    for i in range(dimension):
                        if self._dependson[i]:
                            X[i].extend([float(key[1][i])] * len(val[model_attribute]))
                        else:
                            X[i].extend([np.nan] * len(val[model_attribute]))
            elif key[0] == state_or_tran and len(key[1]) != dimension:
                vprint(self.verbose, '[W] Invalid parameter key length while gathering fit data for {}/{}. is {}, want {}.'.format(state_or_tran, model_attribute, len(key[1]), dimension))
        X = np.array(X)
        Y = np.array(Y)

        return X, Y, num_valid, num_total

    def fit(self, by_param, state_or_tran, model_attribute):
        X, Y, num_valid, num_total = self.get_fit_data(by_param, state_or_tran, model_attribute)
        if num_valid > 2:
            error_function = lambda P, X, y: self._function(P, X) - y
            try:
                res = optimize.least_squares(error_function, self._regression_args, args=(X, Y), xtol=2e-15)
            except ValueError as err:
                vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, err, self._model_str))
                return
            if res.status > 0:
                self._regression_args = res.x
                self.fit_success = True
            else:
                vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, res.message, self._model_str))
        else:
            vprint(self.verbose, '[W] Insufficient amount of valid parameter keys, cannot fit {}/{}'.format(state_or_tran, model_attribute))

    def is_predictable(self, param_list):
        for i, param in enumerate(param_list):
            if self._dependson[i] and not is_numeric(param):
                return False
        return True

    def eval(self, param_list, arg_list = []):
        if len(self._regression_args) == 0:
            return self._function(param_list, arg_list)
        return self._function(self._regression_args, param_list)

class analytic:
    _num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1"))
    _num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
    _num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
    _safe_log = np.vectorize(lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.)
    _safe_inv = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.)
    _safe_sqrt = np.vectorize(lambda x: np.sqrt(np.abs(x)))

    _function_map = {
        'linear' : lambda x: x,
        'logarithmic' : np.log,
        'logarithmic1' : lambda x: np.log(x + 1),
        'exponential' : np.exp,
        'square' : lambda x : x ** 2,
        'inverse' : lambda x : 1 / x,
        'sqrt' : lambda x: np.sqrt(np.abs(x)),
        'num0_8' : _num0_8,
        'num0_16' : _num0_16,
        'num1' : _num1,
        'safe_log' : lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.,
        'safe_inv' : lambda x: 1 / x if np.abs(x) > 0.001 else 1.,
        'safe_sqrt': lambda x: np.sqrt(np.abs(x)),
    }

    def functions(safe_functions_enabled = False):
        functions = {
            'linear' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param,
                lambda model_param: True,
                2
            ),
            'logarithmic' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param),
                lambda model_param: model_param > 0,
                2
            ),
            'logarithmic1' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param + 1),
                lambda model_param: model_param > -1,
                2
            ),
            'exponential' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.exp(model_param),
                lambda model_param: model_param <= 64,
                2
            ),
            #'polynomial' : lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param + reg_param[2] * model_param ** 2,
            'square' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param ** 2,
                lambda model_param: True,
                2
            ),
            'inverse' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] / model_param,
                lambda model_param: model_param != 0,
                2
            ),
            'sqrt' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.sqrt(model_param),
                lambda model_param: model_param >= 0,
                2
            ),
            'num0_8' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_8(model_param),
                lambda model_param: True,
                2
            ),
            'num0_16' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_16(model_param),
                lambda model_param: True,
                2
            ),
            'num1' : ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num1(model_param),
                lambda model_param: True,
                2
            ),
        }

        if safe_functions_enabled:
            functions['safe_log'] = ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_log(model_param),
                lambda model_param: True,
                2
            )
            functions['safe_inv'] = ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_inv(model_param),
                lambda model_param: True,
                2
            )
            functions['safe_sqrt'] = ParamFunction(
                lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_sqrt(model_param),
                lambda model_param: True,
                2
            )

        return functions

    def _fmap(reference_type, reference_name, function_type):
        ref_str = '{}({})'.format(reference_type,reference_name)
        if function_type == 'linear':
            return ref_str
        if function_type == 'logarithmic':
            return 'np.log({})'.format(ref_str)
        if function_type == 'logarithmic1':
            return 'np.log({} + 1)'.format(ref_str)
        if function_type == 'exponential':
            return 'np.exp({})'.format(ref_str)
        if function_type == 'exponential':
            return 'np.exp({})'.format(ref_str)
        if function_type == 'square':
            return '({})**2'.format(ref_str)
        if function_type == 'inverse':
            return '1/({})'.format(ref_str)
        if function_type == 'sqrt':
            return 'np.sqrt({})'.format(ref_str)
        return 'analytic._{}({})'.format(function_type, ref_str)

    def function_powerset(function_descriptions, parameter_names, num_args):
        buf = '0'
        arg_idx = 0
        for combination in powerset(function_descriptions.items()):
            buf += ' + regression_arg({:d})'.format(arg_idx)
            arg_idx += 1
            for function_item in combination:
                if arg_support_enabled and is_numeric(function_item[0]):
                    buf += ' * {}'.format(analytic._fmap('function_arg', function_item[0], function_item[1]['best']))
                else:
                    buf += ' * {}'.format(analytic._fmap('parameter', function_item[0], function_item[1]['best']))
        return AnalyticFunction(buf, parameter_names, num_args)