1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
from itertools import chain, combinations
import numpy as np
import re
from scipy import optimize
from utils import is_numeric
arg_support_enabled = True
def powerset(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
class ParamFunction:
def __init__(self, param_function, validation_function, num_vars):
self._param_function = param_function
self._validation_function = validation_function
self._num_variables = num_vars
def is_valid(self, arg):
return self._validation_function(arg)
def eval(self, param, args):
return self._param_function(param, args)
def error_function(self, P, X, y):
return self._param_function(P, X) - y
class AnalyticFunction:
def __init__(self, function_str, parameters, num_args, verbose = True, regression_args = None):
self._parameter_names = parameters
self._num_args = num_args
self._model_str = function_str
rawfunction = function_str
self._dependson = [False] * (len(parameters) + num_args)
self.fit_success = False
self.verbose = verbose
if type(function_str) == str:
num_vars_re = re.compile(r'regression_arg\(([0-9]+)\)')
num_vars = max(map(int, num_vars_re.findall(function_str))) + 1
for i in range(len(parameters)):
if rawfunction.find('parameter({})'.format(parameters[i])) >= 0:
self._dependson[i] = True
rawfunction = rawfunction.replace('parameter({})'.format(parameters[i]), 'model_param[{:d}]'.format(i))
for i in range(0, num_args):
if rawfunction.find('function_arg({:d})'.format(i)) >= 0:
self._dependson[len(parameters) + i] = True
rawfunction = rawfunction.replace('function_arg({:d})'.format(i), 'model_param[{:d}]'.format(len(parameters) + i))
for i in range(num_vars):
rawfunction = rawfunction.replace('regression_arg({:d})'.format(i), 'reg_param[{:d}]'.format(i))
self._function_str = rawfunction
self._function = eval('lambda reg_param, model_param: ' + rawfunction)
else:
self._function_str = 'raise ValueError'
self._function = function_str
if regression_args:
self._regression_args = regression_args.copy()
self._fit_success = True
elif type(function_str) == str:
self._regression_args = list(np.ones((num_vars)))
else:
self._regression_args = []
def get_fit_data(self, by_param, state_or_tran, model_attribute):
dimension = len(self._parameter_names) + self._num_args
X = [[] for i in range(dimension)]
Y = []
num_valid = 0
num_total = 0
for key, val in by_param.items():
if key[0] == state_or_tran and len(key[1]) == dimension:
valid = True
num_total += 1
for i in range(dimension):
if self._dependson[i] and not is_numeric(key[1][i]):
valid = False
if valid:
num_valid += 1
Y.extend(val[model_attribute])
for i in range(dimension):
if self._dependson[i]:
X[i].extend([float(key[1][i])] * len(val[model_attribute]))
else:
X[i].extend([np.nan] * len(val[model_attribute]))
elif key[0] == state_or_tran and len(key[1]) != dimension:
vprint(self.verbose, '[W] Invalid parameter key length while gathering fit data for {}/{}. is {}, want {}.'.format(state_or_tran, model_attribute, len(key[1]), dimension))
X = np.array(X)
Y = np.array(Y)
return X, Y, num_valid, num_total
def fit(self, by_param, state_or_tran, model_attribute):
X, Y, num_valid, num_total = self.get_fit_data(by_param, state_or_tran, model_attribute)
if num_valid > 2:
error_function = lambda P, X, y: self._function(P, X) - y
try:
res = optimize.least_squares(error_function, self._regression_args, args=(X, Y), xtol=2e-15)
except ValueError as err:
vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, err, self._model_str))
return
if res.status > 0:
self._regression_args = res.x
self.fit_success = True
else:
vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, res.message, self._model_str))
else:
vprint(self.verbose, '[W] Insufficient amount of valid parameter keys, cannot fit {}/{}'.format(state_or_tran, model_attribute))
def is_predictable(self, param_list):
for i, param in enumerate(param_list):
if self._dependson[i] and not is_numeric(param):
return False
return True
def eval(self, param_list, arg_list = []):
if len(self._regression_args) == 0:
return self._function(param_list, arg_list)
return self._function(self._regression_args, param_list)
class analytic:
_num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1"))
_num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
_num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
_safe_log = np.vectorize(lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.)
_safe_inv = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.)
_safe_sqrt = np.vectorize(lambda x: np.sqrt(np.abs(x)))
_function_map = {
'linear' : lambda x: x,
'logarithmic' : np.log,
'logarithmic1' : lambda x: np.log(x + 1),
'exponential' : np.exp,
'square' : lambda x : x ** 2,
'inverse' : lambda x : 1 / x,
'sqrt' : lambda x: np.sqrt(np.abs(x)),
'num0_8' : _num0_8,
'num0_16' : _num0_16,
'num1' : _num1,
'safe_log' : lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.,
'safe_inv' : lambda x: 1 / x if np.abs(x) > 0.001 else 1.,
'safe_sqrt': lambda x: np.sqrt(np.abs(x)),
}
def functions(safe_functions_enabled = False):
functions = {
'linear' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param,
lambda model_param: True,
2
),
'logarithmic' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param),
lambda model_param: model_param > 0,
2
),
'logarithmic1' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param + 1),
lambda model_param: model_param > -1,
2
),
'exponential' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.exp(model_param),
lambda model_param: model_param <= 64,
2
),
#'polynomial' : lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param + reg_param[2] * model_param ** 2,
'square' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param ** 2,
lambda model_param: True,
2
),
'inverse' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] / model_param,
lambda model_param: model_param != 0,
2
),
'sqrt' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.sqrt(model_param),
lambda model_param: model_param >= 0,
2
),
'num0_8' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_8(model_param),
lambda model_param: True,
2
),
'num0_16' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_16(model_param),
lambda model_param: True,
2
),
'num1' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num1(model_param),
lambda model_param: True,
2
),
}
if safe_functions_enabled:
functions['safe_log'] = ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_log(model_param),
lambda model_param: True,
2
)
functions['safe_inv'] = ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_inv(model_param),
lambda model_param: True,
2
)
functions['safe_sqrt'] = ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_sqrt(model_param),
lambda model_param: True,
2
)
return functions
def _fmap(reference_type, reference_name, function_type):
ref_str = '{}({})'.format(reference_type,reference_name)
if function_type == 'linear':
return ref_str
if function_type == 'logarithmic':
return 'np.log({})'.format(ref_str)
if function_type == 'logarithmic1':
return 'np.log({} + 1)'.format(ref_str)
if function_type == 'exponential':
return 'np.exp({})'.format(ref_str)
if function_type == 'exponential':
return 'np.exp({})'.format(ref_str)
if function_type == 'square':
return '({})**2'.format(ref_str)
if function_type == 'inverse':
return '1/({})'.format(ref_str)
if function_type == 'sqrt':
return 'np.sqrt({})'.format(ref_str)
return 'analytic._{}({})'.format(function_type, ref_str)
def function_powerset(function_descriptions, parameter_names, num_args):
buf = '0'
arg_idx = 0
for combination in powerset(function_descriptions.items()):
buf += ' + regression_arg({:d})'.format(arg_idx)
arg_idx += 1
for function_item in combination:
if arg_support_enabled and is_numeric(function_item[0]):
buf += ' * {}'.format(analytic._fmap('function_arg', function_item[0], function_item[1]['best']))
else:
buf += ' * {}'.format(analytic._fmap('parameter', function_item[0], function_item[1]['best']))
return AnalyticFunction(buf, parameter_names, num_args)
|