1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
"""
Harnesses for various types of benchmark logs.
tbd
"""
import subprocess
import re
# TODO prepare benchmark log JSON with parameters etc.
# Should be independent of PTA class, as benchmarks may also be
# generated otherwise and it should also work with AnalyticModel (which does
# not have states)
class TransitionHarness:
"""
TODO
:param done: True if the specified amount of iterations have been logged.
:param synced: True if `parser_cb` has synchronized with UART output, i.e., the benchmark has successfully started.
:param traces: List of annotated PTA traces from benchmark execution. This list is updated during UART logging and should only be read back when `done` is True.
Uses the standard dfatool trace format: `traces` is a list of `{'id': ..., 'trace': ...}` dictionaries, each of which represents a single PTA trace (AKA
run). Each `trace` is in turn a list of state or transition dictionaries with the
following attributes:
* `isa`: 'state' or 'transition'
* `name`: state or transition name
* `parameter`: currently valid parameter values. If normalization is used, they are already normalized. Each parameter value is either a primitive
int/float/str value (-> constant for each iteration) or a list of
primitive values (-> set by the return value of the current run, not necessarily constan)
* `args`: function arguments, if isa == 'transition'
"""
def __init__(self, gpio_pin = None, pta = None, log_return_values = False, repeat = 0, post_transition_delay_us = 0):
"""
Create a new TransitionHarness
:param gpio_pin: multipass GPIO Pin used for transition synchronization with an external measurement device, e.g. `GPIO::p1_0`. Optional.
The GPIO output is high iff a transition is executing
:param pta: PTA object. Needed to map UART output IDs to states and transitions
:param log_return_values: Log return values of transition function calls?
:param repeat: How many times to run the benchmark until setting `one`, default 0.
When 0, `done` is never set.
:param post_transition_delay_us: If set, inject `arch.delay_us` after each transition, before logging the transition as completed (and releasing
`gpio_pin`). This artificially increases transition duration by the specified time and is useful if an external measurement device's resolution is
lower than the expected minimum transition duration.
"""
self.gpio_pin = gpio_pin
self.pta = pta
self.log_return_values = log_return_values
self.repeat = repeat
self.post_transition_delay_us = post_transition_delay_us
self.reset()
def copy(self):
new_object = __class__(gpio_pin = self.gpio_pin, pta = self.pta, log_return_values = self.log_return_values, repeat = self.repeat, post_transition_delay_us = self.post_transition_delay_us)
new_object.traces = self.traces.copy()
new_object.trace_id = self.trace_id
return new_object
def reset(self):
"""
Reset harness for a new benchmark.
Truncates `traces`, `trace_id`, `done`, and `synced`.
"""
self.traces = []
self.trace_id = 0
self.repetitions = 0
self.done = False
self.synced = False
def restart(self):
"""
Reset harness for a new execution of the current benchmark.
Resets `done` and `synced`.
"""
self.repetitions = 0
self.done = False
self.synced = False
def global_code(self):
"""Return global (pre-`main()`) C++ code needed for tracing."""
ret = ''
if self.gpio_pin != None:
ret += '#define PTALOG_GPIO {}\n'.format(self.gpio_pin)
if self.log_return_values:
ret += '#define PTALOG_WITH_RETURNVALUES\n'
ret += 'uint16_t transition_return_value;\n'
ret += '#include "object/ptalog.h"\n'
if self.gpio_pin != None:
ret += 'PTALog ptalog({});\n'.format(self.gpio_pin)
else:
ret += 'PTALog ptalog;\n'
return ret
def start_benchmark(self, benchmark_id = 0):
"""Return C++ code to signal benchmark start to harness."""
return 'ptalog.startBenchmark({:d});\n'.format(benchmark_id)
def start_trace(self):
"""Prepare a new trace/run in the internal `.traces` structure."""
self.traces.append({
'id' : self.trace_id,
'trace' : list(),
})
self.trace_id += 1
def append_state(self, state_name, param):
"""
Append a state to the current run in the internal `.traces` structure.
:param state_name: state name
:param param: parameter dict
"""
self.traces[-1]['trace'].append({
'name': state_name,
'isa': 'state',
'parameter': param,
})
def append_transition(self, transition_name, param, args = []):
"""
Append a transition to the current run in the internal `.traces` structure.
:param transition_name: transition name
:param param: parameter dict
:param args: function arguments (optional)
"""
self.traces[-1]['trace'].append({
'name': transition_name,
'isa': 'transition',
'parameter': param,
'args' : args,
})
def start_run(self):
"""Return C++ code used to start a new run/trace."""
return 'ptalog.reset();\n'
def pass_transition(self, transition_id, transition_code, transition: object = None):
"""
Return C++ code used to pass a transition, including the corresponding function call.
Tracks which transition has been executed and optionally its return value. May also inject a delay, if
`post_transition_delay_us` is set.
"""
ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
ret += 'ptalog.startTransition();\n'
if self.log_return_values and transition and len(transition.return_value_handlers):
ret += 'transition_return_value = {}\n'.format(transition_code)
ret += 'ptalog.logReturn(transition_return_value);\n'
else:
ret += '{}\n'.format(transition_code)
if self.post_transition_delay_us:
ret += 'arch.delay_us({});\n'.format(self.post_transition_delay_us)
ret += 'ptalog.stopTransition();\n'
return ret
def stop_run(self, num_traces = 0):
return 'ptalog.dump({:d});\n'.format(num_traces)
def stop_benchmark(self):
return ''
def _append_nondeterministic_parameter_value(self, log_data_target, parameter_name, parameter_value):
if log_data_target['parameter'][parameter_name] is None:
log_data_target['parameter'][parameter_name] = list()
log_data_target['parameter'][parameter_name].append(parameter_value)
def parser_cb(self, line):
#print('[HARNESS] got line {}'.format(line))
if re.match(r'\[PTA\] benchmark start, id=(\S+)', line):
if self.repeat > 0 and self.repetitions == self.repeat:
self.done = True
self.synced = False
print('[HARNESS] done')
return
self.synced = True
self.repetitions += 1
print('[HARNESS] synced, {}/{}'.format(self.repetitions, self.repeat))
if self.synced:
res = re.match(r'\[PTA\] trace=(\S+) count=(\S+)', line)
if res:
self.trace_id = int(res.group(1))
self.trace_length = int(res.group(2))
self.current_transition_in_trace = 0
#print('[HARNESS] trace {:d} contains {:d} transitions. Expecting {:d} transitions.'.format(self.trace_id, self.trace_length, len(self.traces[self.trace_id]['trace']) // 2))
if self.log_return_values:
res = re.match(r'\[PTA\] transition=(\S+) return=(\S+)', line)
else:
res = re.match(r'\[PTA\] transition=(\S+)', line)
if res:
transition_id = int(res.group(1))
# self.traces contains transitions and states, UART output only contains transitions -> use index * 2
try:
log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2]
except IndexError:
transition_name = None
if self.pta:
transition_name = self.pta.transitions[transition_id].name
print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name))
print(' Offending line: {}'.format(line))
return
if log_data_target['isa'] != 'transition':
raise RuntimeError('Log mismatch: Expected transition, got {:s}'.format(log_data_target['isa']))
if self.pta:
transition = self.pta.transitions[transition_id]
if transition.name != log_data_target['name']:
raise RuntimeError('Log mismatch: Expected transition {:s}, got transition {:s}'.format(log_data_target['name'], transition.name))
if self.log_return_values and len(transition.return_value_handlers):
for handler in transition.return_value_handlers:
if 'parameter' in handler:
parameter_value = return_value = int(res.group(2))
if 'return_values' not in log_data_target:
log_data_target['return_values'] = list()
log_data_target['return_values'].append(return_value)
if 'formula' in handler:
parameter_value = handler['formula'].eval(return_value)
self._append_nondeterministic_parameter_value(log_data_target, handler['parameter'], parameter_value)
for following_log_data_target in self.traces[self.trace_id]['trace'][(self.current_transition_in_trace * 2 + 1) :]:
self._append_nondeterministic_parameter_value(following_log_data_target, handler['parameter'], parameter_value)
if 'apply_from' in handler and any(map(lambda x: x['name'] == handler['apply_from'], self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2 + 1)])):
for preceding_log_data_target in reversed(self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2)]):
self._append_nondeterministic_parameter_value(preceding_log_data_target, handler['parameter'], parameter_value)
if preceding_log_data_target['name'] == handler['apply_from']:
break
self.current_transition_in_trace += 1
class OnboardTimerHarness(TransitionHarness):
"""TODO
Additional parameters / changes from TransitionHarness:
:param traces: Each trace element (`.traces[*]['trace'][*]`) additionally contains
the dict `offline_aggregates` with the member `duration`. It contains a list of durations (in us) of the corresponding state/transition for each
benchmark iteration.
I.e. `.traces[*]['trace'][*]['offline_aggregates']['duration'] = [..., ...]`
"""
def __init__(self, counter_limits, **kwargs):
super().__init__(**kwargs)
self.trace_length = 0
self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow = counter_limits
def copy(self):
new_harness = __class__((self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow), gpio_pin = self.gpio_pin, pta = self.pta, log_return_values = self.log_return_values, repeat = self.repeat)
new_harness.traces = self.traces.copy()
new_harness.trace_id = self.trace_id
return new_harness
def global_code(self):
ret = '#include "driver/counter.h"\n'
ret += '#define PTALOG_TIMING\n'
ret += super().global_code()
return ret
def start_benchmark(self, benchmark_id = 0):
ret = 'counter.start();\n'
ret += 'counter.stop();\n'
ret += 'ptalog.passNop(counter);\n'
ret += super().start_benchmark(benchmark_id)
return ret
def pass_transition(self, transition_id, transition_code, transition: object = None):
ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
ret += 'ptalog.startTransition();\n'
ret += 'counter.start();\n'
if self.log_return_values and transition and len(transition.return_value_handlers):
ret += 'transition_return_value = {}\n'.format(transition_code)
else:
ret += '{}\n'.format(transition_code)
ret += 'counter.stop();\n'
if self.log_return_values and transition and len(transition.return_value_handlers):
ret += 'ptalog.logReturn(transition_return_value);\n'
ret += 'ptalog.stopTransition(counter);\n'
return ret
def _append_nondeterministic_parameter_value(self, log_data_target, parameter_name, parameter_value):
if log_data_target['parameter'][parameter_name] is None:
log_data_target['parameter'][parameter_name] = list()
log_data_target['parameter'][parameter_name].append(parameter_value)
def parser_cb(self, line):
#print('[HARNESS] got line {}'.format(line))
if re.match(r'\[PTA\] benchmark start, id=(\S+)', line):
if self.repeat > 0 and self.repetitions == self.repeat:
self.done = True
self.synced = False
print('[HARNESS] done')
return
self.synced = True
self.repetitions += 1
print('[HARNESS] synced, {}/{}'.format(self.repetitions, self.repeat))
if self.synced:
res = re.match(r'\[PTA\] trace=(\S+) count=(\S+)', line)
if res:
self.trace_id = int(res.group(1))
self.trace_length = int(res.group(2))
self.current_transition_in_trace = 0
#print('[HARNESS] trace {:d} contains {:d} transitions. Expecting {:d} transitions.'.format(self.trace_id, self.trace_length, len(self.traces[self.trace_id]['trace']) // 2))
if self.log_return_values:
res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+) return=(\S+)', line)
else:
res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+)', line)
if res:
transition_id = int(res.group(1))
cycles = int(res.group(2))
overflow = int(res.group(3))
if overflow >= self.counter_max_overflow:
raise RuntimeError('Counter overflow ({:d}/{:d}) in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d})'.format(cycles, overflow, 0, self.trace_id, self.current_transition_in_trace, transition_id))
duration_us = cycles * self.one_cycle_in_us + overflow * self.one_overflow_in_us
# TODO subtract 'nop' cycles
# self.traces contains transitions and states, UART output only contains transitions -> use index * 2
try:
log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2]
except IndexError:
transition_name = None
if self.pta:
transition_name = self.pta.transitions[transition_id].name
print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name))
print(' Offending line: {}'.format(line))
return
if log_data_target['isa'] != 'transition':
raise RuntimeError('Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition, got {:s}'.format(0,
self.trace_id, self.current_transition_in_trace, transition_id, log_data_target['isa']))
if self.pta:
transition = self.pta.transitions[transition_id]
if transition.name != log_data_target['name']:
raise RuntimeError('Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition {:s}, got transition {:s}'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, log_data_target['name'], transition.name))
if self.log_return_values and len(transition.return_value_handlers):
for handler in transition.return_value_handlers:
if 'parameter' in handler:
parameter_value = return_value = int(res.group(4))
if 'return_values' not in log_data_target:
log_data_target['return_values'] = list()
log_data_target['return_values'].append(return_value)
if 'formula' in handler:
parameter_value = handler['formula'].eval(return_value)
self._append_nondeterministic_parameter_value(log_data_target, handler['parameter'], parameter_value)
for following_log_data_target in self.traces[self.trace_id]['trace'][(self.current_transition_in_trace * 2 + 1) :]:
self._append_nondeterministic_parameter_value(following_log_data_target, handler['parameter'], parameter_value)
if 'apply_from' in handler and any(map(lambda x: x['name'] == handler['apply_from'], self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2 + 1)])):
for preceding_log_data_target in reversed(self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2)]):
self._append_nondeterministic_parameter_value(preceding_log_data_target, handler['parameter'], parameter_value)
if preceding_log_data_target['name'] == handler['apply_from']:
break
if 'offline_aggregates' not in log_data_target:
log_data_target['offline_aggregates'] = {
'duration' : list()
}
log_data_target['offline_aggregates']['duration'].append(duration_us)
self.current_transition_in_trace += 1
|