summaryrefslogtreecommitdiff
path: root/lib/harness.py
blob: 92fb9b43d802b382850845d1333393bd80c23890 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
"""
Harnesses for various types of benchmark logs.

tbd
"""
import re
from .pubcode import Code128


class TransitionHarness:
    """
    TODO

    :param done: True if the specified amount of iterations have been logged.
    :param synced: True if `parser_cb` has synchronized with UART output, i.e., the benchmark has successfully started.
    :param traces: List of annotated PTA traces from benchmark execution. This list is updated during UART logging and should only be read back when `done` is True.
        Uses the standard dfatool trace format: `traces` is a list of `{'id': ..., 'trace': ...}` dictionaries, each of which represents a single PTA trace (AKA
        run). Each `trace` is in turn a list of state or transition dictionaries with the
        following attributes:
        * `isa`: 'state' or 'transition'
        * `name`: state or transition name
        * `parameter`: currently valid parameter values. If normalization is used, they are already normalized. Each parameter value is either a primitive
          int/float/str value (-> constant for each iteration) or a list of
          primitive values (-> set by the return value of the current run, not necessarily constant)
        * `args`: function arguments, if isa == 'transition'
    """

    def __init__(
        self,
        gpio_pin=None,
        gpio_mode="around",
        pta=None,
        log_return_values=False,
        repeat=0,
        post_transition_delay_us=0,
        energytrace_sync=None,
    ):
        """
        Create a new TransitionHarness

        :param gpio_pin: multipass GPIO Pin used for transition synchronization with an external measurement device, e.g. `GPIO::p1_0`. Optional.
            The GPIO output is high iff a transition is executing
        :param pta: PTA object. Needed to map UART output IDs to states and transitions
        :param log_return_values: Log return values of transition function calls?
        :param repeat: How many times to run the benchmark until setting `one`, default 0.
            When 0, `done` is never set.
        :param post_transition_delay_us: If set, inject `arch.delay_us` after each transition, before logging the transition as completed (and releasing
            `gpio_pin`). This artificially increases transition duration by the specified time and is useful if an external measurement device's resolution is
            lower than the expected minimum transition duration.
        """
        self.gpio_pin = gpio_pin
        self.gpio_mode = gpio_mode
        self.pta = pta
        self.log_return_values = log_return_values
        self.repeat = repeat
        self.post_transition_delay_us = post_transition_delay_us
        self.energytrace_sync = energytrace_sync
        self.reset()

    def copy(self):
        new_object = __class__(
            gpio_pin=self.gpio_pin,
            gpio_mode=self.gpio_mode,
            pta=self.pta,
            log_return_values=self.log_return_values,
            repeat=self.repeat,
            post_transition_delay_us=self.post_transition_delay_us,
            energytrace_sync=self.energytrace_sync,
        )
        new_object.traces = self.traces.copy()
        new_object.trace_id = self.trace_id
        return new_object

    def undo(self, undo_from):
        """
        Undo all benchmark runs starting with index `undo_from`.

        :param undo_from: index of measurements to be undone. Measurementh with a higher index (i.e., which happened later) will also be undone.

        Removes all logged results (nondeterministic parameter values and return values)
        of the current benchmark iteration. Resets `done` and `synced`,
        """
        for trace in self.traces:
            for state_or_transition in trace["trace"]:
                if "return_values" in state_or_transition:
                    state_or_transition["return_values"] = state_or_transition[
                        "return_values"
                    ][:undo_from]
                for param_name in state_or_transition["parameter"].keys():
                    if type(state_or_transition["parameter"][param_name]) is list:
                        state_or_transition["parameter"][
                            param_name
                        ] = state_or_transition["parameter"][param_name][:undo_from]

    def reset(self):
        """
        Reset harness for a new benchmark.

        Truncates `traces`, `trace_id`, `done`, and `synced`.
        """
        self.traces = []
        self.trace_id = 0
        self.repetitions = 0
        self.abort = False
        self.done = False
        self.synced = False

    def restart(self):
        """
        Reset harness for a new execution of the current benchmark.

        Resets `done` and `synced`.
        """
        self.repetitions = 0
        self.abort = False
        self.done = False
        self.synced = False

    def global_code(self):
        """Return global (pre-`main()`) C++ code needed for tracing."""
        ret = ""
        if self.gpio_pin != None:
            ret += "#define PTALOG_GPIO {}\n".format(self.gpio_pin)
            if self.gpio_mode == "before":
                ret += "#define PTALOG_GPIO_BEFORE\n"
            elif self.gpio_mode == "bar":
                ret += "#define PTALOG_GPIO_BAR\n"
        if self.log_return_values:
            ret += "#define PTALOG_WITH_RETURNVALUES\n"
            ret += "uint16_t transition_return_value;\n"
        ret += '#include "object/ptalog.h"\n'
        if self.gpio_pin != None:
            ret += "PTALog ptalog({});\n".format(self.gpio_pin)
        else:
            ret += "PTALog ptalog;\n"
        return ret

    def start_benchmark(self, benchmark_id=0):
        """Return C++ code to signal benchmark start to harness."""
        return "ptalog.startBenchmark({:d});\n".format(benchmark_id)

    def start_trace(self):
        """Prepare a new trace/run in the internal `.traces` structure."""
        self.traces.append({"id": self.trace_id, "trace": list()})
        self.trace_id += 1

    def append_state(self, state_name, param):
        """
        Append a state to the current run in the internal `.traces` structure.

        :param state_name: state name
        :param param: parameter dict
        """
        self.traces[-1]["trace"].append(
            {"name": state_name, "isa": "state", "parameter": param}
        )

    def append_transition(self, transition_name, param, args=[]):
        """
        Append a transition to the current run in the internal `.traces` structure.

        :param transition_name: transition name
        :param param: parameter dict
        :param args: function arguments (optional)
        """
        self.traces[-1]["trace"].append(
            {
                "name": transition_name,
                "isa": "transition",
                "parameter": param,
                "args": args,
            }
        )

    def start_run(self):
        """Return C++ code used to start a new run/trace."""
        return "ptalog.reset();\n"

    def _get_barcode(self, transition_id):
        barcode_bits = Code128("T{}".format(transition_id), charset="B").modules
        if len(barcode_bits) % 8 != 0:
            barcode_bits.extend([1] * (8 - (len(barcode_bits) % 8)))
        barcode_bytes = [
            255 - int("".join(map(str, reversed(barcode_bits[i : i + 8]))), 2)
            for i in range(0, len(barcode_bits), 8)
        ]
        inline_array = "".join(map(lambda s: "\\x{:02x}".format(s), barcode_bytes))
        return inline_array, len(barcode_bytes)

    def pass_transition(
        self, transition_id, transition_code, transition: object = None
    ):
        """
        Return C++ code used to pass a transition, including the corresponding function call.

        Tracks which transition has been executed and optionally its return value. May also inject a delay, if
        `post_transition_delay_us` is set.
        """
        ret = "ptalog.passTransition({:d});\n".format(transition_id)
        if self.gpio_mode == "bar":
            ret += """ptalog.startTransition("{}", {});\n""".format(
                *self._get_barcode(transition_id)
            )
        else:
            ret += "ptalog.startTransition();\n"
        if (
            self.log_return_values
            and transition
            and len(transition.return_value_handlers)
        ):
            ret += "transition_return_value = {}\n".format(transition_code)
            ret += "ptalog.logReturn(transition_return_value);\n"
        else:
            ret += "{}\n".format(transition_code)
        if self.post_transition_delay_us:
            ret += "arch.delay_us({});\n".format(self.post_transition_delay_us)
        ret += "ptalog.stopTransition();\n"
        return ret

    def stop_run(self, num_traces=0):
        return "ptalog.dump({:d});\n".format(num_traces)

    def stop_benchmark(self):
        return "ptalog.stopBenchmark();\n"

    def _append_nondeterministic_parameter_value(
        self, log_data_target, parameter_name, parameter_value
    ):
        if log_data_target["parameter"][parameter_name] is None:
            log_data_target["parameter"][parameter_name] = list()
        log_data_target["parameter"][parameter_name].append(parameter_value)

    # Here Be Dragons
    def parser_cb(self, line):
        # print('[HARNESS] got line {}'.format(line))
        if re.match(r"\[PTA\] benchmark stop", line):
            self.repetitions += 1
            self.synced = False
            if self.repeat > 0 and self.repetitions == self.repeat:
                self.done = True
                print("[HARNESS] done")
                return
        if re.match(r"\[PTA\] benchmark start, id=(\S+)", line):
            self.synced = True
            print("[HARNESS] synced, {}/{}".format(self.repetitions + 1, self.repeat))
        if self.synced:
            res = re.match(r"\[PTA\] trace=(\S+) count=(\S+)", line)
            if res:
                self.trace_id = int(res.group(1))
                self.trace_length = int(res.group(2))
                self.current_transition_in_trace = 0
            if self.log_return_values:
                res = re.match(r"\[PTA\] transition=(\S+) return=(\S+)", line)
            else:
                res = re.match(r"\[PTA\] transition=(\S+)", line)
            if res:
                transition_id = int(res.group(1))
                # self.traces contains transitions and states, UART output only contains transitions -> use index * 2
                try:
                    log_data_target = self.traces[self.trace_id]["trace"][
                        self.current_transition_in_trace * 2
                    ]
                except IndexError:
                    transition_name = None
                    if self.pta:
                        transition_name = self.pta.transitions[transition_id].name
                    print(
                        "[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds".format(
                            0,
                            self.trace_id,
                            self.current_transition_in_trace,
                            transition_id,
                            transition_name,
                        )
                    )
                    print("          Offending line: {}".format(line))
                    return
                if log_data_target["isa"] != "transition":
                    self.abort = True
                    raise RuntimeError(
                        "Log mismatch: Expected transition, got {:s}".format(
                            log_data_target["isa"]
                        )
                    )
                if self.pta:
                    transition = self.pta.transitions[transition_id]
                    if transition.name != log_data_target["name"]:
                        self.abort = True
                        raise RuntimeError(
                            "Log mismatch: Expected transition {:s}, got transition {:s} -- may have been caused by preceding malformed UART output".format(
                                log_data_target["name"], transition.name
                            )
                        )
                    if self.log_return_values and len(transition.return_value_handlers):
                        for handler in transition.return_value_handlers:
                            if "parameter" in handler:
                                parameter_value = return_value = int(res.group(2))

                                if "return_values" not in log_data_target:
                                    log_data_target["return_values"] = list()
                                log_data_target["return_values"].append(return_value)

                                if "formula" in handler:
                                    parameter_value = handler["formula"].eval(
                                        return_value
                                    )

                                self._append_nondeterministic_parameter_value(
                                    log_data_target,
                                    handler["parameter"],
                                    parameter_value,
                                )
                                for following_log_data_target in self.traces[
                                    self.trace_id
                                ]["trace"][
                                    (self.current_transition_in_trace * 2 + 1) :
                                ]:
                                    self._append_nondeterministic_parameter_value(
                                        following_log_data_target,
                                        handler["parameter"],
                                        parameter_value,
                                    )
                                if "apply_from" in handler and any(
                                    map(
                                        lambda x: x["name"] == handler["apply_from"],
                                        self.traces[self.trace_id]["trace"][
                                            : (self.current_transition_in_trace * 2 + 1)
                                        ],
                                    )
                                ):
                                    for preceding_log_data_target in reversed(
                                        self.traces[self.trace_id]["trace"][
                                            : (self.current_transition_in_trace * 2)
                                        ]
                                    ):
                                        self._append_nondeterministic_parameter_value(
                                            preceding_log_data_target,
                                            handler["parameter"],
                                            parameter_value,
                                        )
                                        if (
                                            preceding_log_data_target["name"]
                                            == handler["apply_from"]
                                        ):
                                            break
                self.current_transition_in_trace += 1


class OnboardTimerHarness(TransitionHarness):
    """TODO

    Additional parameters / changes from TransitionHarness:

    :param traces: Each trace element (`.traces[*]['trace'][*]`) additionally contains
        the dict `offline_aggregates` with the member `duration`. It contains a list of durations (in us) of the corresponding state/transition for each
        benchmark iteration.
        I.e. `.traces[*]['trace'][*]['offline_aggregates']['duration'] = [..., ...]`
    :param remove_nop_from_timings: If true, remove the nop duration from reported timings
        (i.e., reported timings reflect the estimated transition/state duration with the timer call overhea dremoved).
        If false, do not remove nop durations, so the timings more accurately reflect the elapsed wall-clock time during the benchmark.
    """

    def __init__(self, counter_limits, remove_nop_from_timings=True, **kwargs):
        super().__init__(**kwargs)
        self.remove_nop_from_timings = remove_nop_from_timings
        self.trace_length = 0
        (
            self.one_cycle_in_us,
            self.one_overflow_in_us,
            self.counter_max_overflow,
        ) = counter_limits

    def copy(self):
        new_harness = __class__(
            (self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow),
            gpio_pin=self.gpio_pin,
            gpio_mode=self.gpio_mode,
            pta=self.pta,
            log_return_values=self.log_return_values,
            repeat=self.repeat,
            energytrace_sync=self.energytrace_sync,
        )
        new_harness.traces = self.traces.copy()
        new_harness.trace_id = self.trace_id
        return new_harness

    def reset(self):
        super().reset()
        self.trace_length = 0

    def set_trace_start_offset(self, start_offset):
        if not "start_offset" in self.traces[0]:
            self.traces[0]["start_offset"] = list()
        self.traces[0]["start_offset"].append(start_offset)

    def undo(self, undo_from):
        """
        Undo all benchmark runs starting with index `undo_from`.

        :param undo_from: index of measurements to be undone. Measurementh with a higher index (i.e., which happened later) will also be undone.

        Removes all logged results (durations, nondeterministic parameter values, return values)
        of the current benchmark iteration. Resets `done` and `synced`,
        """
        super().undo(undo_from)
        for trace in self.traces:
            for state_or_transition in trace["trace"]:
                if "offline_aggregates" in state_or_transition:
                    state_or_transition["offline_aggregates"][
                        "duration"
                    ] = state_or_transition["offline_aggregates"]["duration"][
                        :undo_from
                    ]
            if "start_offset" in trace:
                trace["start_offset"] = trace["start_offset"][:undo_from]

    def global_code(self):
        ret = "#define PTALOG_TIMING\n"
        ret += super().global_code()
        if self.energytrace_sync == "led":
            # TODO Make nicer
            ret += """\nvoid runLASync(){
    // ======================= LED SYNC ================================
    gpio.write(PTALOG_GPIO, 1);
    gpio.led_on(0);
    gpio.led_on(1);
    gpio.write(PTALOG_GPIO, 0);

    for (unsigned char i = 0; i < 4; i++) {
        arch.sleep_ms(250);
    }

    gpio.write(PTALOG_GPIO, 1);
    gpio.led_off(0);
    gpio.led_off(1);
    gpio.write(PTALOG_GPIO, 0);
    // ======================= LED SYNC ================================
}\n\n"""
        return ret

    def start_benchmark(self, benchmark_id=0):
        ret = ""
        if self.energytrace_sync == "led":
            ret += "runLASync();\n"
        ret += "ptalog.passNop();\n"
        if self.energytrace_sync == "led":
            ret += "arch.sleep_ms(250);\n"
        ret += super().start_benchmark(benchmark_id)
        return ret

    def stop_benchmark(self):
        ret = ""
        if self.energytrace_sync == "led":
            ret += "counter.stop();\n"
            ret += "runLASync();\n"
        ret += super().stop_benchmark()
        if self.energytrace_sync == "led":
            ret += "arch.sleep_ms(250);\n"
        return ret

    def pass_transition(
        self, transition_id, transition_code, transition: object = None
    ):
        ret = "ptalog.passTransition({:d});\n".format(transition_id)
        if self.gpio_mode == "bar":
            ret += """ptalog.startTransition("{}", {});\n""".format(
                *self._get_barcode(transition_id)
            )
        else:
            ret += "ptalog.startTransition();\n"
        if (
            self.log_return_values
            and transition
            and len(transition.return_value_handlers)
        ):
            ret += "transition_return_value = {}\n".format(transition_code)
        else:
            ret += "{}\n".format(transition_code)
        if (
            self.log_return_values
            and transition
            and len(transition.return_value_handlers)
        ):
            ret += "ptalog.logReturn(transition_return_value);\n"
        ret += "ptalog.stopTransition();\n"
        return ret

    def _append_nondeterministic_parameter_value(
        self, log_data_target, parameter_name, parameter_value
    ):
        if log_data_target["parameter"][parameter_name] is None:
            log_data_target["parameter"][parameter_name] = list()
        log_data_target["parameter"][parameter_name].append(parameter_value)

    # Here Be Dragons
    def parser_cb(self, line):
        # print('[HARNESS] got line {}'.format(line))
        res = re.match(r"\[PTA\] nop=(\S+)/(\S+)", line)
        if res:
            self.nop_cycles = int(res.group(1))
            if int(res.group(2)):
                raise RuntimeError(
                    "Counter overflow ({:d}/{:d}) during NOP test, wtf?!".format(
                        res.group(1), res.group(2)
                    )
                )
        match = re.match(r"\[PTA\] benchmark stop, cycles=(\S+)/(\S+)", line)
        if match:
            self.repetitions += 1
            self.synced = False
            if self.repeat > 0 and self.repetitions == self.repeat:
                self.done = True
                prev_state_cycles = int(match.group(1))
                prev_state_overflow = int(match.group(2))
                prev_state_duration_us = (
                    prev_state_cycles * self.one_cycle_in_us
                    + prev_state_overflow * self.one_overflow_in_us
                )
                if self.remove_nop_from_timings:
                    prev_state_duration_us -= self.nop_cycles * self.one_cycle_in_us
                final_state = self.traces[self.trace_id]["trace"][-1]
                if "offline_aggregates" not in final_state:
                    final_state["offline_aggregates"] = {"duration": list()}
                final_state["offline_aggregates"]["duration"].append(
                    prev_state_duration_us
                )

                print("[HARNESS] done")
                return
        # May be repeated, e.g. if the device is reset shortly after start by
        # EnergyTrace.
        if re.match(r"\[PTA\] benchmark start, id=(\S+)", line):
            self.synced = True
            print("[HARNESS] synced, {}/{}".format(self.repetitions + 1, self.repeat))
        if self.synced:
            res = re.match(r"\[PTA\] trace=(\S+) count=(\S+)", line)
            if res:
                self.trace_id = int(res.group(1))
                self.trace_length = int(res.group(2))
                self.current_transition_in_trace = 0
            if self.log_return_values:
                res = re.match(
                    r"\[PTA\] transition=(\S+) prevcycles=(\S+)/(\S+) cycles=(\S+)/(\S+) return=(\S+)",
                    line,
                )
            else:
                res = re.match(
                    r"\[PTA\] transition=(\S+) prevcycles=(\S+)/(\S+) cycles=(\S+)/(\S+)",
                    line,
                )
            if res:
                transition_id = int(res.group(1))
                prev_state_cycles = int(res.group(2))
                prev_state_overflow = int(res.group(3))
                cycles = int(res.group(4))
                overflow = int(res.group(5))
                if overflow >= self.counter_max_overflow:
                    self.abort = True
                    raise RuntimeError(
                        "Counter overflow ({:d}/{:d}) in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d})".format(
                            cycles,
                            overflow,
                            0,
                            self.trace_id,
                            self.current_transition_in_trace,
                            transition_id,
                        )
                    )
                if prev_state_overflow >= self.counter_max_overflow:
                    self.abort = True
                    raise RuntimeError(
                        "Counter overflow ({:d}/{:d}) in benchmark id={:d} trace={:d}: state before transition #{:d} (ID {:d})".format(
                            prev_state_cycles,
                            prev_state_overflow,
                            0,
                            self.trace_id,
                            self.current_transition_in_trace,
                            transition_id,
                        )
                    )
                duration_us = (
                    cycles * self.one_cycle_in_us + overflow * self.one_overflow_in_us
                )
                prev_state_duration_us = (
                    prev_state_cycles * self.one_cycle_in_us
                    + prev_state_overflow * self.one_overflow_in_us
                )
                if self.remove_nop_from_timings:
                    duration_us -= self.nop_cycles * self.one_cycle_in_us
                    prev_state_duration_us -= self.nop_cycles * self.one_cycle_in_us
                if duration_us < 0:
                    duration_us = 0
                # self.traces contains transitions and states, UART output only contains transitions -> use index * 2
                try:
                    log_data_target = self.traces[self.trace_id]["trace"][
                        self.current_transition_in_trace * 2
                    ]
                    if self.current_transition_in_trace > 0:
                        prev_state_data = self.traces[self.trace_id]["trace"][
                            self.current_transition_in_trace * 2 - 1
                        ]
                    elif self.current_transition_in_trace == 0 and self.trace_id > 0:
                        prev_state_data = self.traces[self.trace_id - 1]["trace"][-1]
                    else:
                        if self.current_transition_in_trace == 0 and self.trace_id == 0:
                            self.set_trace_start_offset(prev_state_duration_us)
                        prev_state_data = None
                except IndexError:
                    transition_name = None
                    if self.pta:
                        transition_name = self.pta.transitions[transition_id].name
                    print(
                        "[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds".format(
                            0,
                            self.trace_id,
                            self.current_transition_in_trace,
                            transition_id,
                            transition_name,
                        )
                    )
                    print("          Offending line: {}".format(line))
                    return
                if log_data_target["isa"] != "transition":
                    self.abort = True
                    raise RuntimeError(
                        "Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition, got {:s}".format(
                            0,
                            self.trace_id,
                            self.current_transition_in_trace,
                            transition_id,
                            log_data_target["isa"],
                        )
                    )
                if prev_state_data and prev_state_data["isa"] != "state":
                    self.abort = True
                    raise RuntimeError(
                        "Log mismatch in benchmark id={:d} trace={:d}: state before transition #{:d} (ID {:d}): Expected state, got {:s}".format(
                            0,
                            self.trace_id,
                            self.current_transition_in_trace,
                            transition_id,
                            prev_state_data["isa"],
                        )
                    )
                if self.pta:
                    transition = self.pta.transitions[transition_id]
                    if transition.name != log_data_target["name"]:
                        self.abort = True
                        raise RuntimeError(
                            "Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition {:s}, got transition {:s} -- may have been caused by preceding maformed UART output".format(
                                0,
                                self.trace_id,
                                self.current_transition_in_trace,
                                transition_id,
                                log_data_target["name"],
                                transition.name,
                                line,
                            )
                        )
                    if self.log_return_values and len(transition.return_value_handlers):
                        for handler in transition.return_value_handlers:
                            if "parameter" in handler:
                                parameter_value = return_value = int(res.group(4))

                                if "return_values" not in log_data_target:
                                    log_data_target["return_values"] = list()
                                log_data_target["return_values"].append(return_value)

                                if "formula" in handler:
                                    parameter_value = handler["formula"].eval(
                                        return_value
                                    )

                                self._append_nondeterministic_parameter_value(
                                    log_data_target,
                                    handler["parameter"],
                                    parameter_value,
                                )
                                for following_log_data_target in self.traces[
                                    self.trace_id
                                ]["trace"][
                                    (self.current_transition_in_trace * 2 + 1) :
                                ]:
                                    self._append_nondeterministic_parameter_value(
                                        following_log_data_target,
                                        handler["parameter"],
                                        parameter_value,
                                    )
                                if "apply_from" in handler and any(
                                    map(
                                        lambda x: x["name"] == handler["apply_from"],
                                        self.traces[self.trace_id]["trace"][
                                            : (self.current_transition_in_trace * 2 + 1)
                                        ],
                                    )
                                ):
                                    for preceding_log_data_target in reversed(
                                        self.traces[self.trace_id]["trace"][
                                            : (self.current_transition_in_trace * 2)
                                        ]
                                    ):
                                        self._append_nondeterministic_parameter_value(
                                            preceding_log_data_target,
                                            handler["parameter"],
                                            parameter_value,
                                        )
                                        if (
                                            preceding_log_data_target["name"]
                                            == handler["apply_from"]
                                        ):
                                            break
                if "offline_aggregates" not in log_data_target:
                    log_data_target["offline_aggregates"] = {"duration": list()}
                log_data_target["offline_aggregates"]["duration"].append(duration_us)
                if prev_state_data is not None:
                    if "offline_aggregates" not in prev_state_data:
                        prev_state_data["offline_aggregates"] = {"duration": list()}
                    prev_state_data["offline_aggregates"]["duration"].append(
                        prev_state_duration_us
                    )
                self.current_transition_in_trace += 1