summaryrefslogtreecommitdiff
path: root/lib/harness.py
blob: 7a7b898176c2d1f0e2f9eaac4c975f288777f042 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
"""
Harnesses for various types of benchmark logs.

tbd
"""
import subprocess
import re
from pubcode import Code128

class TransitionHarness:
    """
    TODO

    :param done: True if the specified amount of iterations have been logged.
    :param synced: True if `parser_cb` has synchronized with UART output, i.e., the benchmark has successfully started.
    :param traces: List of annotated PTA traces from benchmark execution. This list is updated during UART logging and should only be read back when `done` is True.
        Uses the standard dfatool trace format: `traces` is a list of `{'id': ..., 'trace': ...}` dictionaries, each of which represents a single PTA trace (AKA
        run). Each `trace` is in turn a list of state or transition dictionaries with the
        following attributes:
        * `isa`: 'state' or 'transition'
        * `name`: state or transition name
        * `parameter`: currently valid parameter values. If normalization is used, they are already normalized. Each parameter value is either a primitive
          int/float/str value (-> constant for each iteration) or a list of
          primitive values (-> set by the return value of the current run, not necessarily constan)
        * `args`: function arguments, if isa == 'transition'
    """
    def __init__(self, gpio_pin = None, gpio_mode = 'around', pta = None, log_return_values = False, repeat = 0, post_transition_delay_us = 0):
        """
        Create a new TransitionHarness

        :param gpio_pin: multipass GPIO Pin used for transition synchronization with an external measurement device, e.g. `GPIO::p1_0`. Optional.
            The GPIO output is high iff a transition is executing
        :param pta: PTA object. Needed to map UART output IDs to states and transitions
        :param log_return_values: Log return values of transition function calls?
        :param repeat: How many times to run the benchmark until setting `one`, default 0.
            When 0, `done` is never set.
        :param post_transition_delay_us: If set, inject `arch.delay_us` after each transition, before logging the transition as completed (and releasing
            `gpio_pin`). This artificially increases transition duration by the specified time and is useful if an external measurement device's resolution is
            lower than the expected minimum transition duration.
        """
        self.gpio_pin = gpio_pin
        self.gpio_mode = gpio_mode
        self.pta = pta
        self.log_return_values = log_return_values
        self.repeat = repeat
        self.post_transition_delay_us = post_transition_delay_us
        self.reset()

    def copy(self):
        new_object = __class__(gpio_pin = self.gpio_pin, gpio_mode = self.gpio_mode, pta = self.pta, log_return_values = self.log_return_values, repeat = self.repeat, post_transition_delay_us = self.post_transition_delay_us)
        new_object.traces = self.traces.copy()
        new_object.trace_id = self.trace_id
        return new_object

    def undo(self, undo_from):
        """
        Undo all benchmark runs starting with index `undo_from`.

        :param undo_from: index of measurements to be undone. Measurementh with a higher index (i.e., which happened later) will also be undone.

        Removes all logged results (nondeterministic parameter values and return values)
        of the current benchmark iteration. Resets `done` and `synced`,
        """
        for trace in self.traces:
            for state_or_transition in trace['trace']:
                if 'return_values' in state_or_transition:
                    state_or_transition['return_values'] = state_or_transition['return_values'][:undo_from]
                for param_name in state_or_transition['parameter'].keys():
                    if type(state_or_transition['parameter'][param_name]) is list:
                        state_or_transition['parameter'][param_name] = state_or_transition['parameter'][param_name][:undo_from]

    def reset(self):
        """
        Reset harness for a new benchmark.

        Truncates `traces`, `trace_id`, `done`, and `synced`.
        """
        self.traces = []
        self.trace_id = 0
        self.repetitions = 0
        self.abort = False
        self.done = False
        self.synced = False

    def restart(self):
        """
        Reset harness for a new execution of the current benchmark.

        Resets `done` and `synced`.
        """
        self.repetitions = 0
        self.abort = False
        self.done = False
        self.synced = False

    def global_code(self):
        """Return global (pre-`main()`) C++ code needed for tracing."""
        ret = ''
        if self.gpio_pin != None:
            ret += '#define PTALOG_GPIO {}\n'.format(self.gpio_pin)
            if self.gpio_mode == 'before':
                ret += '#define PTALOG_GPIO_BEFORE\n'
            elif self.gpio_mode == 'bar':
                ret += '#define PTALOG_GPIO_BAR\n'
        if self.log_return_values:
            ret += '#define PTALOG_WITH_RETURNVALUES\n'
            ret += 'uint16_t transition_return_value;\n'
        ret += '#include "object/ptalog.h"\n'
        if self.gpio_pin != None:
            ret += 'PTALog ptalog({});\n'.format(self.gpio_pin)
        else:
            ret += 'PTALog ptalog;\n'
        return ret

    def start_benchmark(self, benchmark_id = 0):
        """Return C++ code to signal benchmark start to harness."""
        return 'ptalog.startBenchmark({:d});\n'.format(benchmark_id)

    def start_trace(self):
        """Prepare a new trace/run in the internal `.traces` structure."""
        self.traces.append({
            'id' : self.trace_id,
            'trace' : list(),
        })
        self.trace_id += 1

    def append_state(self, state_name, param):
        """
        Append a state to the current run in the internal `.traces` structure.

        :param state_name: state name
        :param param: parameter dict
        """
        self.traces[-1]['trace'].append({
            'name': state_name,
            'isa': 'state',
            'parameter': param,
        })

    def append_transition(self, transition_name, param, args = []):
        """
        Append a transition to the current run in the internal `.traces` structure.

        :param transition_name: transition name
        :param param: parameter dict
        :param args: function arguments (optional)
        """
        self.traces[-1]['trace'].append({
            'name': transition_name,
            'isa': 'transition',
            'parameter': param,
            'args' : args,
        })

    def start_run(self):
        """Return C++ code used to start a new run/trace."""
        return 'ptalog.reset();\n'

    def _pass_transition_call(self, transition_id):
        if self.gpio_mode == 'bar':
            barcode_bits = Code128('T{}'.format(transition_id), charset='B').modules
            if len(barcode_bits) % 8 != 0:
                barcode_bits.extend([1] * (8 - (len(barcode_bits) % 8)))
            barcode_bytes = [255 - int("".join(map(str, reversed(barcode_bits[i:i+8]))), 2) for i in range(0, len(barcode_bits), 8)]
            inline_array = "".join(map(lambda s: '\\x{:02x}'.format(s), barcode_bytes))
            return 'ptalog.startTransition("{}", {});\n'.format(inline_array, len(barcode_bytes))
        else:
            return 'ptalog.startTransition();\n'

    def pass_transition(self, transition_id, transition_code, transition: object = None):
        """
        Return C++ code used to pass a transition, including the corresponding function call.

        Tracks which transition has been executed and optionally its return value. May also inject a delay, if
        `post_transition_delay_us` is set.
        """
        ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
        ret += self._pass_transition_call(transition_id)
        if self.log_return_values and transition and len(transition.return_value_handlers):
            ret += 'transition_return_value = {}\n'.format(transition_code)
            ret += 'ptalog.logReturn(transition_return_value);\n'
        else:
            ret += '{}\n'.format(transition_code)
        if self.post_transition_delay_us:
            ret += 'arch.delay_us({});\n'.format(self.post_transition_delay_us)
        ret += 'ptalog.stopTransition();\n'
        return ret

    def stop_run(self, num_traces = 0):
        return 'ptalog.dump({:d});\n'.format(num_traces)

    def stop_benchmark(self):
        return 'ptalog.stopBenchmark();\n'

    def _append_nondeterministic_parameter_value(self, log_data_target, parameter_name, parameter_value):
        if log_data_target['parameter'][parameter_name] is None:
            log_data_target['parameter'][parameter_name] = list()
        log_data_target['parameter'][parameter_name].append(parameter_value)

    def parser_cb(self, line):
        #print('[HARNESS] got line {}'.format(line))
        if re.match(r'\[PTA\] benchmark stop', line):
            self.repetitions += 1
            self.synced = False
            if self.repeat > 0 and self.repetitions == self.repeat:
                self.done = True
                print('[HARNESS] done')
                return
        if re.match(r'\[PTA\] benchmark start, id=(\S+)', line):
            self.synced = True
            print('[HARNESS] synced, {}/{}'.format(self.repetitions + 1, self.repeat))
        if self.synced:
            res = re.match(r'\[PTA\] trace=(\S+) count=(\S+)', line)
            if res:
                self.trace_id = int(res.group(1))
                self.trace_length = int(res.group(2))
                self.current_transition_in_trace = 0
            if self.log_return_values:
                res = re.match(r'\[PTA\] transition=(\S+) return=(\S+)', line)
            else:
                res = re.match(r'\[PTA\] transition=(\S+)', line)
            if res:
                transition_id = int(res.group(1))
                # self.traces contains transitions and states, UART output only contains transitions -> use index * 2
                try:
                    log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2]
                except IndexError:
                    transition_name = None
                    if self.pta:
                        transition_name = self.pta.transitions[transition_id].name
                    print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name))
                    print('          Offending line: {}'.format(line))
                    return
                if log_data_target['isa'] != 'transition':
                    self.abort = True
                    raise RuntimeError('Log mismatch: Expected transition, got {:s}'.format(log_data_target['isa']))
                if self.pta:
                    transition = self.pta.transitions[transition_id]
                    if transition.name != log_data_target['name']:
                        self.abort = True
                        raise RuntimeError('Log mismatch: Expected transition {:s}, got transition {:s} -- may have been caused by preceding malformed UART output'.format(log_data_target['name'], transition.name))
                    if self.log_return_values and len(transition.return_value_handlers):
                        for handler in transition.return_value_handlers:
                            if 'parameter' in handler:
                                parameter_value = return_value = int(res.group(2))

                                if 'return_values' not in log_data_target:
                                    log_data_target['return_values'] = list()
                                log_data_target['return_values'].append(return_value)

                                if 'formula' in handler:
                                    parameter_value = handler['formula'].eval(return_value)

                                self._append_nondeterministic_parameter_value(log_data_target, handler['parameter'], parameter_value)
                                for following_log_data_target in self.traces[self.trace_id]['trace'][(self.current_transition_in_trace * 2 + 1) :]:
                                    self._append_nondeterministic_parameter_value(following_log_data_target, handler['parameter'], parameter_value)
                                if 'apply_from' in handler and any(map(lambda x: x['name'] == handler['apply_from'], self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2 + 1)])):
                                    for preceding_log_data_target in reversed(self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2)]):
                                        self._append_nondeterministic_parameter_value(preceding_log_data_target, handler['parameter'], parameter_value)
                                        if preceding_log_data_target['name'] == handler['apply_from']:
                                            break
                self.current_transition_in_trace += 1

class OnboardTimerHarness(TransitionHarness):
    """TODO

    Additional parameters / changes from TransitionHarness:

    :param traces: Each trace element (`.traces[*]['trace'][*]`) additionally contains
        the dict `offline_aggregates` with the member `duration`. It contains a list of durations (in us) of the corresponding state/transition for each
        benchmark iteration.
        I.e. `.traces[*]['trace'][*]['offline_aggregates']['duration'] = [..., ...]`
    """
    def __init__(self, counter_limits, **kwargs):
        super().__init__(**kwargs)
        self.trace_length = 0
        self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow = counter_limits

    def copy(self):
        new_harness = __class__((self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow), gpio_pin = self.gpio_pin, gpio_mode = self.gpio_mode, pta = self.pta, log_return_values = self.log_return_values, repeat = self.repeat)
        new_harness.traces = self.traces.copy()
        new_harness.trace_id = self.trace_id
        return new_harness

    def undo(self, undo_from):
        """
        Undo all benchmark runs starting with index `undo_from`.

        :param undo_from: index of measurements to be undone. Measurementh with a higher index (i.e., which happened later) will also be undone.

        Removes all logged results (durations, nondeterministic parameter values, return values)
        of the current benchmark iteration. Resets `done` and `synced`,
        """
        super().undo(undo_from)
        for trace in self.traces:
            for state_or_transition in trace['trace']:
                if 'offline_aggregates' in state_or_transition:
                    state_or_transition['offline_aggregates']['duration'] = state_or_transition['offline_aggregates']['duration'][:undo_from]

    def global_code(self):
        ret = '#include "driver/counter.h"\n'
        ret += '#define PTALOG_TIMING\n'
        ret += super().global_code()
        return ret

    def start_benchmark(self, benchmark_id = 0):
        ret = 'counter.start();\n'
        ret += 'counter.stop();\n'
        ret += 'ptalog.passNop(counter);\n'
        ret += super().start_benchmark(benchmark_id)
        return ret

    def pass_transition(self, transition_id, transition_code, transition: object = None):
        ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
        ret += self._pass_transition_call(transition_id)
        ret += 'counter.start();\n'
        if self.log_return_values and transition and len(transition.return_value_handlers):
            ret += 'transition_return_value = {}\n'.format(transition_code)
        else:
            ret += '{}\n'.format(transition_code)
        ret += 'counter.stop();\n'
        if self.log_return_values and transition and len(transition.return_value_handlers):
            ret += 'ptalog.logReturn(transition_return_value);\n'
        ret += 'ptalog.stopTransition(counter);\n'
        return ret

    def _append_nondeterministic_parameter_value(self, log_data_target, parameter_name, parameter_value):
        if log_data_target['parameter'][parameter_name] is None:
            log_data_target['parameter'][parameter_name] = list()
        log_data_target['parameter'][parameter_name].append(parameter_value)

    def parser_cb(self, line):
        #print('[HARNESS] got line {}'.format(line))
        if re.match(r'\[PTA\] benchmark stop', line):
            self.repetitions += 1
            self.synced = False
            if self.repeat > 0 and self.repetitions == self.repeat:
                self.done = True
                print('[HARNESS] done')
                return
        # May be repeated, e.g. if the device is reset shortly after start by
        # EnergyTrace.
        if re.match(r'\[PTA\] benchmark start, id=(\S+)', line):
            self.synced = True
            print('[HARNESS] synced, {}/{}'.format(self.repetitions + 1, self.repeat))
        if self.synced:
            res = re.match(r'\[PTA\] trace=(\S+) count=(\S+)', line)
            if res:
                self.trace_id = int(res.group(1))
                self.trace_length = int(res.group(2))
                self.current_transition_in_trace = 0
            if self.log_return_values:
                res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+) return=(\S+)', line)
            else:
                res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+)', line)
            if res:
                transition_id = int(res.group(1))
                cycles = int(res.group(2))
                overflow = int(res.group(3))
                if overflow >= self.counter_max_overflow:
                    self.abort = True
                    raise RuntimeError('Counter overflow ({:d}/{:d}) in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d})'.format(cycles, overflow, 0, self.trace_id, self.current_transition_in_trace, transition_id))
                duration_us = cycles * self.one_cycle_in_us + overflow * self.one_overflow_in_us
                # TODO subtract 'nop' cycles
                # self.traces contains transitions and states, UART output only contains transitions -> use index * 2
                try:
                    log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2]
                except IndexError:
                    transition_name = None
                    if self.pta:
                        transition_name = self.pta.transitions[transition_id].name
                    print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name))
                    print('          Offending line: {}'.format(line))
                    return
                if log_data_target['isa'] != 'transition':
                    self.abort = True
                    raise RuntimeError('Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition, got {:s}'.format(0,
                        self.trace_id, self.current_transition_in_trace, transition_id, log_data_target['isa']))
                if self.pta:
                    transition = self.pta.transitions[transition_id]
                    if transition.name != log_data_target['name']:
                        self.abort = True
                        raise RuntimeError('Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition {:s}, got transition {:s} -- may have been caused by preceding maformed UART output'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, log_data_target['name'], transition.name, line))
                    if self.log_return_values and len(transition.return_value_handlers):
                        for handler in transition.return_value_handlers:
                            if 'parameter' in handler:
                                parameter_value = return_value = int(res.group(4))

                                if 'return_values' not in log_data_target:
                                    log_data_target['return_values'] = list()
                                log_data_target['return_values'].append(return_value)

                                if 'formula' in handler:
                                    parameter_value = handler['formula'].eval(return_value)

                                self._append_nondeterministic_parameter_value(log_data_target, handler['parameter'], parameter_value)
                                for following_log_data_target in self.traces[self.trace_id]['trace'][(self.current_transition_in_trace * 2 + 1) :]:
                                    self._append_nondeterministic_parameter_value(following_log_data_target, handler['parameter'], parameter_value)
                                if 'apply_from' in handler and any(map(lambda x: x['name'] == handler['apply_from'], self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2 + 1)])):
                                    for preceding_log_data_target in reversed(self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2)]):
                                        self._append_nondeterministic_parameter_value(preceding_log_data_target, handler['parameter'], parameter_value)
                                        if preceding_log_data_target['name'] == handler['apply_from']:
                                            break
                if 'offline_aggregates' not in log_data_target:
                    log_data_target['offline_aggregates'] = {
                        'duration' : list()
                    }
                log_data_target['offline_aggregates']['duration'].append(duration_us)
                self.current_transition_in_trace += 1