summaryrefslogtreecommitdiff
path: root/lib/harness.py
blob: cad7b067ec6f83352cd38194d19ceb1526d44bd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Harnesses for various types of benchmark logs.

tbd
"""
import subprocess
import re

# TODO prepare benchmark log JSON with parameters etc.
# Should be independent of PTA class, as benchmarks may also be
# generated otherwise and it should also work with AnalyticModel (which does
# not have states)
class TransitionHarness:
    def __init__(self, gpio_pin = None, pta = None, log_return_values = False):
        self.gpio_pin = gpio_pin
        self.pta = pta
        self.log_return_values = log_return_values
        self.reset()

    def reset(self):
        self.traces = []
        self.trace_id = 1
        self.synced = False

    def global_code(self):
        ret = ''
        if self.gpio_pin != None:
            ret += '#define PTALOG_GPIO {}\n'.format(self.gpio_pin)
        if self.log_return_values:
            ret += '#define PTALOG_WITH_RETURNVALUES\n'
            ret += 'uint16_t transition_return_value;\n'
        ret += '#include "object/ptalog.h"\n'
        if self.gpio_pin != None:
            ret += 'PTALog ptalog({});\n'.format(self.gpio_pin)
        else:
            ret += 'PTALog ptalog;\n'
        return ret

    def start_benchmark(self, benchmark_id = 0):
        return 'ptalog.startBenchmark({:d});\n'.format(benchmark_id)

    def start_trace(self):
        self.traces.append({
            'id' : self.trace_id,
            'trace' : list(),
        })
        self.trace_id += 1

    def append_state(self, state_name, param):
        self.traces[-1]['trace'].append({
            'name': state_name,
            'isa': 'state',
            'parameter': param,
        })

    def append_transition(self, transition_name, param, args = []):
        self.traces[-1]['trace'].append({
            'name': transition_name,
            'isa': 'transition',
            'parameter': param,
            'args' : args,
        })

    def start_run(self):
        return 'ptalog.reset();\n'

    def pass_transition(self, transition_id, transition_code, transition: object = None):
        ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
        ret += 'ptalog.startTransition();\n'
        if self.log_return_values and transition and len(transition.return_value_handlers):
            ret += 'transition_return_value = {}\n'.format(transition_code)
            ret += 'ptalog.logReturn(transition_return_value);\n'
        else:
            ret += '{}\n'.format(transition_code)
        ret += 'ptalog.stopTransition();\n'
        return ret

    def stop_run(self, num_traces = 0):
        return 'ptalog.dump({:d});\n'.format(num_traces)

    def stop_benchmark(self):
        return ''

    def parser_cb(self, line):
        pass

    def parse_log(self, lines):
        sync = False
        for line in lines:
            print(line)
            res = re.fullmatch(r'\[PTA\] (.*=.*)', line)
            if re.fullmatch(r'\[PTA\] benchmark start, id=(.*)', line):
                print('> got sync')
                sync = True
            elif not sync:
                continue
            elif re.fullmatch(r'\[PTA\] trace, count=(.*)', line):
                print('> got transition')
                pass
            elif res:
                print(dict(map(lambda x: x.split('='), res.group(1).split())))
                pass

class OnboardTimerHarness(TransitionHarness):
    def __init__(self, counter_limits, **kwargs):
        super().__init__(**kwargs)
        self.trace_id = 0
        self.trace_length = 0
        self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow = counter_limits

    def global_code(self):
        ret = '#include "driver/counter.h"\n'
        ret += '#define PTALOG_TIMING\n'
        ret += super().global_code()
        return ret

    def start_benchmark(self, benchmark_id = 0):
        ret = 'counter.start();\n'
        ret += 'counter.stop();\n'
        ret += 'ptalog.passNop(counter);\n'
        ret += super().start_benchmark(benchmark_id)
        return ret

    def pass_transition(self, transition_id, transition_code, transition: object = None):
        ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
        ret += 'ptalog.startTransition();\n'
        ret += 'counter.start();\n'
        if self.log_return_values and transition and len(transition.return_value_handlers):
            ret += 'transition_return_value = {}\n'.format(transition_code)
        else:
            ret += '{}\n'.format(transition_code)
        ret += 'counter.stop();\n'
        if self.log_return_values and transition and len(transition.return_value_handlers):
            ret += 'ptalog.logReturn(transition_return_value);\n'
        ret += 'ptalog.stopTransition(counter);\n'
        return ret

    def _append_nondeterministic_parameter_value(self, log_data_target, parameter_name, parameter_value):
        if log_data_target['parameter'][parameter_name] is None:
            log_data_target['parameter'][parameter_name] = list()
        log_data_target['parameter'][parameter_name].append(parameter_value)

    def parser_cb(self, line):
        #print('[HARNESS] got line {}'.format(line))
        if re.match(r'\[PTA\] benchmark start, id=(\S+)', line):
            self.synced = True
            print('[HARNESS] synced')
        if self.synced:
            res = re.match(r'\[PTA\] trace=(\S+) count=(\S+)', line)
            if res:
                self.trace_id = int(res.group(1))
                self.trace_length = int(res.group(2))
                self.current_transition_in_trace = 0
                #print('[HARNESS] trace {:d} contains {:d} transitions. Expecting {:d} transitions.'.format(self.trace_id, self.trace_length, len(self.traces[self.trace_id]['trace']) // 2))
            if self.log_return_values:
                res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+) return=(\S+)', line)
            else:
                res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+)', line)
            if res:
                transition_id = int(res.group(1))
                # TODO Handle Overflows (requires knowledge of arch-specific max cycle value)
                cycles = int(res.group(2))
                overflow = int(res.group(3))
                if overflow >= self.counter_max_overflow:
                    raise RuntimeError('Counter overflow ({:d}/{:d}) in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d})'.format(cycles, overflow, 0, self.trace_id, self.current_transition_in_trace, transition_id))
                duration_us = cycles * self.one_cycle_in_us + overflow * self.one_overflow_in_us
                # self.traces contains transitions and states, UART output only contains trnasitions -> use index * 2
                try:
                    log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2]
                except IndexError:
                    transition_name = None
                    if self.pta:
                        transition_name = self.pta.transitions[transition_id].name
                    print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name))
                    print('          Offending line: {}'.format(line))
                    return
                if log_data_target['isa'] != 'transition':
                    raise RuntimeError('Log mismatch: Expected transition, got {:s}'.format(log_data_target['isa']))
                if self.pta:
                    transition = self.pta.transitions[transition_id]
                    if transition.name != log_data_target['name']:
                        raise RuntimeError('Log mismatch: Expected transition {:s}, got transition {:s}'.format(log_data_target['name'], transition.name))
                    if self.log_return_values and len(transition.return_value_handlers):
                        for handler in transition.return_value_handlers:
                            if 'parameter' in handler:
                                parameter_value = return_value = int(res.group(4))

                                if 'return_values' not in log_data_target:
                                    log_data_target['return_values'] = list()
                                log_data_target['return_values'].append(return_value)

                                if 'formula' in handler:
                                    parameter_value = handler['formula'].eval(return_value)

                                print('append current')
                                self._append_nondeterministic_parameter_value(log_data_target, handler['parameter'], parameter_value)
                                print('append following')
                                for following_log_data_target in self.traces[self.trace_id]['trace'][(self.current_transition_in_trace * 2 + 1) :]:
                                    self._append_nondeterministic_parameter_value(following_log_data_target, handler['parameter'], parameter_value)
                                print('append preceding')
                                if 'apply_from' in handler and any(map(lambda x: x['name'] == handler['apply_from'], self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2 + 1)])):
                                    for preceding_log_data_target in reversed(self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2)]):
                                        self._append_nondeterministic_parameter_value(preceding_log_data_target, handler['parameter'], parameter_value)
                                        if preceding_log_data_target['name'] == handler['apply_from']:
                                            break
                if 'offline_aggregates' not in log_data_target:
                    log_data_target['offline_aggregates'] = {
                        'duration' : list()
                    }
                log_data_target['offline_aggregates']['duration'].append(duration_us)
                self.current_transition_in_trace += 1