1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
#!/usr/bin/env python3
import json
import logging
import numpy as np
import os
import re
from dfatool.loader.generic import ExternalTimerSync
from dfatool.utils import NpEncoder, soft_cast_int
logger = logging.getLogger(__name__)
try:
from dfatool.pubcode import Code128
import zbar
zbar_available = True
except ImportError:
zbar_available = False
def _load_energytrace(data_string):
"""
Load log data (raw energytrace .txt file, one line per event).
:param log_data: raw energytrace log file in 4-column .txt format
"""
lines = data_string.decode("ascii").split("\n")
data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines))
data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines)
data = np.empty((data_count, 4))
hardware_states = [None for i in range(data_count)]
for i, line in enumerate(data_lines):
fields = line.split(" ")
if len(fields) == 4:
timestamp, current, voltage, total_energy = map(int, fields)
elif len(fields) == 5:
hardware_states[i] = fields[0]
timestamp, current, voltage, total_energy = map(int, fields[1:])
else:
raise RuntimeError('cannot parse line "{}"'.format(line))
data[i] = [timestamp, current, voltage, total_energy]
interval_start_timestamp = data[1:, 0] * 1e-6
interval_duration = (data[1:, 0] - data[:-1, 0]) * 1e-6
interval_power = (data[1:, 3] - data[:-1, 3]) / (data[1:, 0] - data[:-1, 0]) * 1e-3
m_duration_us = data[-1, 0] - data[0, 0]
sample_rate = data_count / (m_duration_us * 1e-6)
hardware_state_changes = list()
if hardware_states[0]:
prev_state = hardware_states[0]
# timestamps start at data[1], so hardware state change indexes must start at 1, too
for i, state in enumerate(hardware_states[1:]):
if (
state != prev_state
and state != "0000000000000000"
and prev_state != "0000000000000000"
):
hardware_state_changes.append(i)
if state != "0000000000000000":
prev_state = state
logger.debug(
"got {} samples with {} seconds of log data ({} Hz)".format(
data_count, m_duration_us * 1e-6, sample_rate
)
)
return (
interval_start_timestamp,
interval_duration,
interval_power,
sample_rate,
hardware_state_changes,
)
class EnergyTrace:
@staticmethod
def add_offline_aggregates(online_traces, offline_trace, repeat_id):
# Edits online_traces[*]['trace'][*]['offline']
# and online_traces[*]['trace'][*]['offline_aggregates'] in place
# (appends data from offline_trace)
online_datapoints = []
for run_idx, run in enumerate(online_traces):
for trace_part_idx in range(len(run["trace"])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, (online_run_idx, online_trace_part_idx) in enumerate(
online_datapoints
):
try:
offline_trace_part = offline_trace[offline_idx]
except IndexError:
logger.error(f" offline energy_trace data is shorter than online data")
logger.error(f" len(online_datapoints) == {len(online_datapoints)}")
logger.error(f" len(energy_trace) == {len(offline_trace)}")
raise
online_trace_part = online_traces[online_run_idx]["trace"][
online_trace_part_idx
]
if "offline" not in online_trace_part:
online_trace_part["offline"] = [offline_trace_part]
else:
online_trace_part["offline"].append(offline_trace_part)
paramkeys = sorted(online_trace_part["parameter"].keys())
paramvalues = list()
for paramkey in paramkeys:
if type(online_trace_part["parameter"][paramkey]) is list:
paramvalues.append(
soft_cast_int(
online_trace_part["parameter"][paramkey][repeat_id]
)
)
else:
paramvalues.append(
soft_cast_int(online_trace_part["parameter"][paramkey])
)
# NB: Unscheduled transitions do not have an 'args' field set.
# However, they should only be caused by interrupts, and
# interrupts don't have args anyways.
if "args" in online_trace_part:
paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))
if "offline_aggregates" not in online_trace_part:
online_trace_part["offline_aggregates"] = {
"offline_attributes": ["power", "duration", "energy"],
"duration": list(),
"power": list(),
"power_std": list(),
"energy": list(),
"paramkeys": list(),
"param": list(),
}
if "plot" in offline_trace_part:
online_trace_part["offline_support"] = [
"power_traces",
"timestamps",
]
online_trace_part["offline_aggregates"]["power_traces"] = list()
online_trace_part["offline_aggregates"]["timestamps"] = list()
if online_trace_part["isa"] == "transition":
online_trace_part["offline_aggregates"][
"offline_attributes"
].extend(["rel_power_prev", "rel_power_next"])
online_trace_part["offline_aggregates"]["rel_energy_prev"] = list()
online_trace_part["offline_aggregates"]["rel_energy_next"] = list()
online_trace_part["offline_aggregates"]["rel_power_prev"] = list()
online_trace_part["offline_aggregates"]["rel_power_next"] = list()
offline_aggregates = online_trace_part["offline_aggregates"]
# if online_trace_part['isa'] == 'transitions':
# online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next'])
# offline_aggregates['rel_energy_prev'] = list()
# offline_aggregates['rel_energy_next'] = list()
offline_aggregates["duration"].append(offline_trace_part["s"] * 1e6)
offline_aggregates["power"].append(offline_trace_part["W_mean"] * 1e6)
offline_aggregates["power_std"].append(offline_trace_part["W_std"] * 1e6)
offline_aggregates["energy"].append(
offline_trace_part["W_mean"] * offline_trace_part["s"] * 1e12
)
offline_aggregates["paramkeys"].append(paramkeys)
offline_aggregates["param"].append(paramvalues)
if "plot" in offline_trace_part:
offline_aggregates["power_traces"].append(offline_trace_part["plot"][1])
offline_aggregates["timestamps"].append(offline_trace_part["plot"][0])
if online_trace_part["isa"] == "transition":
offline_aggregates["rel_energy_prev"].append(
offline_trace_part["W_mean_delta_prev"]
* offline_trace_part["s"]
* 1e12
)
offline_aggregates["rel_energy_next"].append(
offline_trace_part["W_mean_delta_next"]
* offline_trace_part["s"]
* 1e12
)
offline_aggregates["rel_power_prev"].append(
offline_trace_part["W_mean_delta_prev"] * 1e6
)
offline_aggregates["rel_power_next"].append(
offline_trace_part["W_mean_delta_next"] * 1e6
)
class EnergyTraceWithBarcode:
"""
EnergyTrace log loader for DFA traces.
Expects an EnergyTrace log file generated via msp430-etv / energytrace-util
and a dfatool-generated benchmark. An EnergyTrace log consits of a series
of measurements. Each measurement has a timestamp, mean current, voltage,
and cumulative energy since start of measurement. Each transition is
preceded by a Code128 barcode embedded into the energy consumption by
toggling a LED.
Note that the baseline power draw of board and peripherals is not subtracted
at the moment.
"""
def __init__(
self,
voltage: float,
state_duration: int,
transition_names: list,
with_traces=False,
):
"""
Create a new EnergyTraceWithBarcode object.
:param voltage: supply voltage [V], usually 3.3 V
:param state_duration: state duration [ms]
:param transition_names: list of transition names in PTA transition order.
Needed to map barcode synchronization numbers to transitions.
"""
self.voltage = voltage
self.state_duration = state_duration * 1e-3
self.transition_names = transition_names
self.with_traces = with_traces
self.errors = list()
# TODO auto-detect
self.led_power = 10e-3
# multipass/include/object/ptalog.h#startTransition
self.module_duration = 5e-3
# multipass/include/object/ptalog.h#startTransition
self.quiet_zone_duration = 60e-3
# TODO auto-detect?
# Note that we consider barcode duration after start, so only the
# quiet zone -after- the code is relevant
self.min_barcode_duration = 57 * self.module_duration + self.quiet_zone_duration
self.max_barcode_duration = 68 * self.module_duration + self.quiet_zone_duration
def load_data(self, log_data):
"""
Load log data (raw energytrace .txt file, one line per event).
:param log_data: raw energytrace log file in 4-column .txt format
"""
if not zbar_available:
logger.error("zbar module is not available")
self.errors.append(
'zbar module is not available. Try "apt install python3-zbar"'
)
self.interval_power = None
return list()
(
self.interval_start_timestamp,
self.interval_duration,
self.interval_power,
self.sample_rate,
self.hw_statechange_indexes,
) = _load_energytrace(log_data[0])
def ts_to_index(self, timestamp):
"""
Convert timestamp in seconds to interval_start_timestamp / interval_duration / interval_power index.
Returns the index of the interval which timestamp is part of.
"""
return self._ts_to_index(timestamp, 0, len(self.interval_start_timestamp))
def _ts_to_index(self, timestamp, left_index, right_index):
if left_index == right_index:
return left_index
if left_index + 1 == right_index:
return left_index
mid_index = left_index + (right_index - left_index) // 2
# I'm feeling lucky
if (
timestamp > self.interval_start_timestamp[mid_index]
and timestamp
<= self.interval_start_timestamp[mid_index]
+ self.interval_duration[mid_index]
):
return mid_index
if timestamp <= self.interval_start_timestamp[mid_index]:
return self._ts_to_index(timestamp, left_index, mid_index)
return self._ts_to_index(timestamp, mid_index, right_index)
def analyze_states(self, traces, offline_index: int):
"""
Split log data into states and transitions and return duration, energy, and mean power for each element.
:param traces: expected traces, needed to synchronize with the measurement.
traces is a list of runs, traces[*]['trace'] is a single run
(i.e. a list of states and transitions, starting with a transition
and ending with a state).
:param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes
:param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
:param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
:param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
:returns: maybe returns list of states and transitions, both starting andending with a state.
Each element is a dict containing:
* `isa`: 'state' or 'transition'
* `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
* `raw_mean`: Mittelwert der Rohwerte
* `raw_std`: Standardabweichung der Rohwerte
* `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
* `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
* `us`: Dauer
if isa == 'transition, it also contains:
* `timeout`: Dauer des vorherigen Zustands
* `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
* `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
"""
energy_trace = list()
first_sync = self.find_first_sync()
if first_sync is None:
logger.error("did not find initial synchronization pulse")
return energy_trace
expected_transitions = list()
for trace_number, trace in enumerate(traces):
for state_or_transition_number, state_or_transition in enumerate(
trace["trace"]
):
if state_or_transition["isa"] == "transition":
try:
expected_transitions.append(
(
state_or_transition["name"],
state_or_transition["online_aggregates"]["duration"][
offline_index
]
* 1e-6,
)
)
except IndexError:
self.errors.append(
'Entry #{} ("{}") in trace #{} has no duration entry for offline_index/repeat_id {}'.format(
state_or_transition_number,
state_or_transition["name"],
trace_number,
offline_index,
)
)
return energy_trace
next_barcode = first_sync
for name, duration in expected_transitions:
bc, start, stop, end = self.find_barcode(next_barcode)
if bc is None:
logger.error('did not find transition "{}"'.format(name))
break
next_barcode = end + self.state_duration + duration
logger.debug(
'{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(
offline_index, bc, start, stop, end
)
)
if bc != name:
logger.error('mismatch: expected "{}", got "{}"'.format(name, bc))
logger.debug(
"{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format(
offline_index, end, end + duration
)
)
transition_start_index = self.ts_to_index(end)
transition_done_index = self.ts_to_index(end + duration) + 1
state_start_index = transition_done_index
state_done_index = (
self.ts_to_index(end + duration + self.state_duration) + 1
)
logger.debug(
"{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds".format(
offline_index,
transition_start_index / self.sample_rate,
transition_done_index / self.sample_rate,
)
)
transition_power_W = self.interval_power[
transition_start_index:transition_done_index
]
transition = {
"isa": "transition",
"W_mean": np.mean(transition_power_W),
"W_std": np.std(transition_power_W),
"s": duration,
"s_coarse": self.interval_start_timestamp[transition_done_index]
- self.interval_start_timestamp[transition_start_index],
}
if self.with_traces:
timestamps = (
self.interval_start_timestamp[
transition_start_index:transition_done_index
]
- self.interval_start_timestamp[transition_start_index]
)
transition["plot"] = (timestamps, transition_power_W)
energy_trace.append(transition)
if len(energy_trace) > 1:
energy_trace[-1]["W_mean_delta_prev"] = (
energy_trace[-1]["W_mean"] - energy_trace[-2]["W_mean"]
)
else:
# TODO this really isn't nice, as W_mean_delta_prev of other setup
# transitions is probably different. The best solution might be
# ignoring the first transition when handling delta_prev values
energy_trace[-1]["W_mean_delta_prev"] = energy_trace[-1]["W_mean"]
state_power_W = self.interval_power[state_start_index:state_done_index]
state = {
"isa": "state",
"W_mean": np.mean(state_power_W),
"W_std": np.std(state_power_W),
"s": self.state_duration,
"s_coarse": self.interval_start_timestamp[state_done_index]
- self.interval_start_timestamp[state_start_index],
}
if self.with_traces:
timestamps = (
self.interval_start_timestamp[state_start_index:state_done_index]
- self.interval_start_timestamp[state_start_index]
)
state["plot"] = (timestamps, state_power_W)
energy_trace.append(state)
energy_trace[-2]["W_mean_delta_next"] = (
energy_trace[-2]["W_mean"] - energy_trace[-1]["W_mean"]
)
expected_transition_count = len(expected_transitions)
recovered_transition_ount = len(energy_trace) // 2
if expected_transition_count != recovered_transition_ount:
self.errors.append(
"Expected {:d} transitions, got {:d}".format(
expected_transition_count, recovered_transition_ount
)
)
return energy_trace
def find_first_sync(self):
# zbar unavailable
if self.interval_power is None:
return None
# LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
sync_threshold_power = (
np.median(self.interval_power[: int(3 * self.sample_rate)])
+ self.led_power / 3
)
for i, ts in enumerate(self.interval_start_timestamp):
if ts > 2 and self.interval_power[i] > sync_threshold_power:
return self.interval_start_timestamp[i - 300]
return None
def find_barcode(self, start_ts):
"""
Return absolute position and content of the next barcode following `start_ts`.
:param interval_ts: list of start timestamps (one per measurement interval) [s]
:param interval_power: mean power per measurement interval [W]
:param start_ts: timestamp at which to start looking for a barcode [s]
"""
for i, ts in enumerate(self.interval_start_timestamp):
if ts >= start_ts:
start_position = i
break
# Lookaround: 100 ms in both directions
lookaround = int(0.1 * self.sample_rate)
# LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
sync_threshold_power = (
np.median(
self.interval_power[
start_position - lookaround : start_position + lookaround
]
)
+ self.led_power / 3
)
logger.debug(
"looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format(
start_ts, sync_threshold_power * 1e3
)
)
sync_area_start = None
sync_start_ts = None
sync_area_end = None
sync_end_ts = None
for i, ts in enumerate(self.interval_start_timestamp):
if (
sync_area_start is None
and ts >= start_ts
and self.interval_power[i] > sync_threshold_power
):
sync_area_start = i - 300
sync_start_ts = ts
if (
sync_area_start is not None
and sync_area_end is None
and ts > sync_start_ts + self.min_barcode_duration
and (
ts > sync_start_ts + self.max_barcode_duration
or abs(sync_threshold_power - self.interval_power[i])
> self.led_power
)
):
sync_area_end = i
sync_end_ts = ts
break
barcode_data = self.interval_power[sync_area_start:sync_area_end]
logger.debug(
"barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format(
sync_start_ts, sync_end_ts, len(barcode_data)
)
)
bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data)
if bc is None:
return None, None, None, None
start_ts = self.interval_start_timestamp[sync_area_start + start]
stop_ts = self.interval_start_timestamp[sync_area_start + stop]
end_ts = (
stop_ts + self.module_duration * padding_bits + self.quiet_zone_duration
)
# barcode content, barcode start timestamp, barcode stop timestamp, barcode end (stop + padding) timestamp
return bc, start_ts, stop_ts, end_ts
def find_barcode_in_power_data(self, barcode_data):
min_power = np.min(barcode_data)
max_power = np.max(barcode_data)
# zbar seems to be confused by measurement (and thus image) noise
# inside of barcodes. As our barcodes are only 1px high, this is
# likely not trivial to fix.
# -> Create a black and white (not grayscale) image to avoid this.
# Unfortunately, this decreases resilience against background noise
# (e.g. a not-exactly-idle peripheral device or CPU interrupts).
image_data = np.around(
1 - ((barcode_data - min_power) / (max_power - min_power))
)
image_data *= 255
# zbar only returns the complete barcode position if it is at least
# two pixels high. For a 1px barcode, it only returns its right border.
width = len(image_data)
height = 2
image_data = bytes(map(int, image_data)) * height
# img = Image.frombytes('L', (width, height), image_data).resize((width, 100))
# img.save('/tmp/test-{}.png'.format(os.getpid()))
zbimg = zbar.Image(width, height, "Y800", image_data)
scanner = zbar.ImageScanner()
scanner.parse_config("enable")
if scanner.scan(zbimg):
(sym,) = zbimg.symbols
content = sym.data
try:
sym_start = sym.location[1][0]
except IndexError:
sym_start = 0
sym_end = sym.location[0][0]
match = re.fullmatch(r"T(\d+)", content)
if match:
content = self.transition_names[int(match.group(1))]
# PTALog barcode generation operates on bytes, so there may be
# additional non-barcode padding (encoded as LED off / image white).
# Calculate the amount of extra bits to determine the offset until
# the transition starts.
padding_bits = len(Code128(sym.data, charset="B").modules) % 8
# sym_start leaves out the first two bars, but we don't do anything about that here
# sym_end leaves out the last three bars, each of which is one padding bit long.
# as a workaround, we unconditionally increment padding_bits by three.
padding_bits += 3
return content, sym_start, sym_end, padding_bits
else:
logger.warning("unable to find barcode")
return None, None, None, None
class EnergyTraceWithLogicAnalyzer(ExternalTimerSync):
def __init__(
self,
voltage: float,
state_duration: int,
transition_names: list,
with_traces=False,
):
"""
Create a new EnergyTraceWithLogicAnalyzer object.
:param voltage: supply voltage [V], usually 3.3 V
:param state_duration: state duration [ms]
:param transition_names: list of transition names in PTA transition order.
Needed to map barcode synchronization numbers to transitions.
"""
self.voltage = voltage
self.state_duration = state_duration * 1e-3
self.transition_names = transition_names
self.with_traces = with_traces
self.errors = list()
self.sync_min_duration = 0.7
self.sync_min_low_count = 3
self.sync_min_high_count = 1
self.sync_power = 0.011
def load_data(self, log_data):
la_data = json.loads(log_data[0])
self.sync_data = la_data["timestamps"]
(
self.interval_start_timestamp,
self.interval_duration,
self.interval_power,
self.sample_rate,
self.hw_statechange_indexes,
) = _load_energytrace(log_data[1])
self.timestamps = self.interval_start_timestamp
self.data = self.interval_power
for x in range(1, len(self.sync_data)):
if self.sync_data[x] - self.sync_data[x - 1] > 1.3:
self.sync_data = self.sync_data[x:]
break
for x in reversed(range(1, len(self.sync_data))):
if self.sync_data[x] - self.sync_data[x - 1] > 1.3:
self.sync_data = self.sync_data[:x]
break
# Each synchronization pulse consists of two LogicAnalyzer pulses, so four
# entries in time_stamp_data (rising edge, falling edge, rising edge, falling edge).
# If we have less then twelve entries, we observed no transitions and don't even have
# valid synchronization data. In this case, we bail out.
if len(self.sync_data) < 12:
raise RuntimeError(
f"LogicAnalyzer sync data has length {len(time_stamp_data)}, expected >= 12"
)
self.online_timestamps = self.sync_data[2:3] + self.sync_data[4:-7]
self.online_timestamps = (
np.array(self.online_timestamps) - self.online_timestamps[0]
)
def analyze_states(self, expected_trace, repeat_id):
return super().analyze_states(expected_trace, repeat_id, self.online_timestamps)
class EnergyTraceWithTimer(ExternalTimerSync):
def __init__(
self,
voltage: float,
state_duration: int,
transition_names: list,
with_traces=False,
):
"""
Create a new EnergyTraceWithLogicAnalyzer object.
:param voltage: supply voltage [V], usually 3.3 V
:param state_duration: state duration [ms]
:param transition_names: list of transition names in PTA transition order.
Needed to map barcode synchronization numbers to transitions.
"""
self.voltage = voltage
self.state_duration = state_duration * 1e-3
self.transition_names = transition_names
self.with_traces = with_traces
self.errors = list()
self.sync_min_duration = 0.7
self.sync_min_low_count = 3
self.sync_min_high_count = 1
self.sync_power = 0.011
def load_data(self, log_data):
self.sync_data = None
(
self.interval_start_timestamp,
self.interval_duration,
self.interval_power,
self.sample_rate,
self.hw_statechange_indexes,
) = _load_energytrace(log_data[0])
# for analyze_states
self.timestamps = self.interval_start_timestamp
self.data = self.interval_power
|