1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
#!/usr/bin/env python3
import csv
import io
import numpy as np
import struct
import xml.etree.ElementTree as ET
from bisect import bisect_right
class KeysightCSV:
"""Simple loader for Keysight CSV data, as exported by the windows software."""
def __init__(self):
"""Create a new KeysightCSV object."""
pass
def load_data(self, filename: str):
"""
Load log data from filename, return timestamps and currents.
Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
"""
with open(filename) as f:
for i, _ in enumerate(f):
pass
timestamps = np.ndarray((i - 3), dtype=float)
currents = np.ndarray((i - 3), dtype=float)
# basically seek back to start
with open(filename) as f:
for _ in range(4):
next(f)
reader = csv.reader(f, delimiter=",")
for i, row in enumerate(reader):
timestamps[i] = float(row[0])
currents[i] = float(row[2]) * -1
return timestamps, currents
class DLogChannel:
def __init__(self, desc_tuple):
self.slot = desc_tuple[0]
self.smu = desc_tuple[1]
self.unit = desc_tuple[2]
self.data = None
def __repr__(self):
return f"""<DLogChannel(slot={self.slot}, smu="{self.smu}", unit="{self.unit}", data={self.data})>"""
class DLog:
def __init__(
self,
voltage: float,
state_duration: int,
with_traces=False,
skip_duration=None,
limit_duration=None,
):
self.voltage = voltage
self.state_duration = state_duration
self.with_traces = with_traces
self.skip_duration = skip_duration
self.limit_duration = limit_duration
self.errors = list()
self.sync_min_duration = 0.7
# TODO auto-detect
self.sync_power = 10e-3
def load_data(self, content):
lines = []
line = ""
with io.BytesIO(content) as f:
while line != "</dlog>\n":
line = f.readline().decode()
lines.append(line)
xml_header = "".join(lines)
raw_header = f.read(8)
data_offset = f.tell()
raw_data = f.read()
xml_header = xml_header.replace("1ua>", "X1ua>")
xml_header = xml_header.replace("2ua>", "X2ua>")
dlog = ET.fromstring(xml_header)
channels = []
for channel in dlog.findall("channel"):
channel_id = int(channel.get("id"))
sense_curr = channel.find("sense_curr").text
sense_volt = channel.find("sense_volt").text
model = channel.find("ident").find("model").text
if sense_volt == "1":
channels.append((channel_id, model, "V"))
if sense_curr == "1":
channels.append((channel_id, model, "A"))
num_channels = len(channels)
self.channels = list(map(DLogChannel, channels))
self.interval = float(dlog.find("frame").find("tint").text)
self.sense_minmax = int(dlog.find("frame").find("sense_minmax").text)
self.planned_duration = int(dlog.find("frame").find("time").text)
self.observed_duration = self.interval * int(len(raw_data) / (4 * num_channels))
if self.sense_minmax:
raise RuntimeError(
"DLog files with 'Log Min/Max' enabled are not supported yet"
)
self.timestamps = np.linspace(
0, self.observed_duration, num=int(len(raw_data) / (4 * num_channels))
)
if (
self.skip_duration is not None
and self.observed_duration >= self.skip_duration
):
start_offset = 0
for i, ts in enumerate(self.timestamps):
if ts >= self.skip_duration:
start_offset = i
break
self.timestamps = self.timestamps[start_offset:]
raw_data = raw_data[start_offset * 4 * num_channels :]
if (
self.limit_duration is not None
and self.observed_duration > self.limit_duration
):
stop_offset = len(self.timestamps) - 1
for i, ts in enumerate(self.timestamps):
if ts > self.limit_duration:
stop_offset = i
break
self.timestamps = self.timestamps[:stop_offset]
self.observed_duration = self.timestamps[-1]
raw_data = raw_data[: stop_offset * 4 * num_channels]
self.data = np.ndarray(
shape=(num_channels, int(len(raw_data) / (4 * num_channels))),
dtype=np.float32,
)
iterator = struct.iter_unpack(">f", raw_data)
channel_offset = 0
measurement_offset = 0
for value in iterator:
if value[0] < -1e6 or value[0] > 1e6:
print(
f"Invalid data value {value[0]} at channel {channel_offset}, measurement {measurement_offset}. Replacing with 0."
)
self.data[channel_offset, measurement_offset] = 0
else:
self.data[channel_offset, measurement_offset] = value[0]
if channel_offset + 1 == num_channels:
channel_offset = 0
measurement_offset += 1
else:
channel_offset += 1
# An SMU has four slots
self.slots = [dict(), dict(), dict(), dict()]
for i, channel in enumerate(self.channels):
channel.data = self.data[i]
self.slots[channel.slot - 1][channel.unit] = channel
assert "A" in self.slots[0]
self.data = self.slots[0]["A"].data
def observed_duration_equals_expectation(self):
return int(self.observed_duration) == self.planned_duration
# very similar to DataProcessor.getStatesdfatool
def analyze_states(self, expected_trace, repeat_id):
sync_start = None
sync_timestamps = list()
above_count = 0
below_count = 0
for i, timestamp in enumerate(self.timestamps):
power = self.voltage * self.data[i]
if power > self.sync_power:
above_count += 1
below_count = 0
else:
above_count = 0
below_count += 1
if above_count > 2 and sync_start is None:
sync_start = timestamp
elif below_count > 2 and sync_start is not None:
if timestamp - sync_start > self.sync_min_duration:
sync_end = timestamp
sync_timestamps.append((sync_start, sync_end))
sync_start = None
print(sync_timestamps)
if len(sync_timestamps) != 3:
self.errors.append(
f"Found {len(sync_timestamps)} synchronization pulses, expected three."
)
self.errors.append(f"Synchronization pulses == {sync_timestamps}")
return list()
start_ts = sync_timestamps[0][1]
end_ts = sync_timestamps[1][0]
# start and end of first state
online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
# remaining events from the end of the first transition (start of second state) to the end of the last observed state
for trace in expected_trace:
for word in trace["trace"]:
online_timestamps.append(
online_timestamps[-1]
+ word["online_aggregates"]["duration"][repeat_id]
)
online_timestamps = np.array(online_timestamps) * 1e-6
online_timestamps = (
online_timestamps * ((end_ts - start_ts) / online_timestamps[-1]) + start_ts
)
trigger_edges = list()
for ts in online_timestamps:
trigger_edges.append(bisect_right(self.timestamps, ts))
energy_trace = list()
for i in range(2, len(online_timestamps), 2):
prev_state_start_index = trigger_edges[i - 2]
prev_state_stop_index = trigger_edges[i - 1]
transition_start_index = trigger_edges[i - 1]
transition_stop_index = trigger_edges[i]
state_start_index = trigger_edges[i]
state_stop_index = trigger_edges[i + 1]
# If a transition takes less time than the measurement interval, its start and stop index may be the same.
# In this case, self.data[transition_start_index] is the only data point affected by the transition.
# We use the self.data slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
# to increment transition_stop_index by 1 to end at self.data[transition_start_index]
# (self.data[transition_start_index : transition_start_index+1 ] == [self.data[transition_start_index])
if transition_stop_index == transition_start_index:
transition_stop_index += 1
prev_state_duration = online_timestamps[i + 1] - online_timestamps[i]
transition_duration = online_timestamps[i] - online_timestamps[i - 1]
state_duration = online_timestamps[i + 1] - online_timestamps[i]
# some states are followed by a UART dump of log data. This causes an increase in CPU energy
# consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
# If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
# In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
# instead of high-precision sync data
if (
self.timestamps[prev_state_stop_index]
- self.timestamps[prev_state_start_index]
> self.state_duration
):
prev_state_stop_index = bisect_right(
self.timestamps,
self.timestamps[prev_state_start_index] + self.state_duration,
)
prev_state_duration = (
self.timestamps[prev_state_stop_index]
- self.timestamps[prev_state_start_index]
)
if (
self.timestamps[state_stop_index] - self.timestamps[state_start_index]
> self.state_duration
):
state_stop_index = bisect_right(
self.timestamps,
self.timestamps[state_start_index] + self.state_duration,
)
state_duration = (
self.timestamps[state_stop_index]
- self.timestamps[state_start_index]
)
prev_state_power = self.data[prev_state_start_index:prev_state_stop_index]
transition_timestamps = self.timestamps[
transition_start_index:transition_stop_index
]
transition_power = self.data[transition_start_index:transition_stop_index]
state_timestamps = self.timestamps[state_start_index:state_stop_index]
state_power = self.data[state_start_index:state_stop_index]
transition = {
"isa": "transition",
"W_mean": np.mean(transition_power),
"W_std": np.std(transition_power),
"s": transition_duration,
}
if self.with_traces:
transition["plot"] = (
transition_timestamps - transition_timestamps[0],
transition_power,
)
state = {
"isa": "state",
"W_mean": np.mean(state_power),
"W_std": np.std(state_power),
"s": state_duration,
}
if self.with_traces:
state["plot"] = (state_timestamps - state_timestamps[0], state_power)
transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
prev_state_power
)
transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
energy_trace.append(transition)
energy_trace.append(state)
return energy_trace
|