1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
#!/usr/bin/env python3
import numpy as np
import ruptures
from multiprocessing import Pool
# returns the found changepoints by algo for the specific penalty pen.
# algo should be the return value of Pelt(...).fit(signal)
# Also puts a token in container q to let the progressmeter know the changepoints for penalty pen
# have been calculated.
# used for parallel calculation of changepoints vs penalty
def _get_breakpoints(algo, pen):
return pen, len(algo.predict(pen=pen))
def find_knee_point(data_x, data_y, S=1.0, curve="convex", direction="decreasing"):
kneedle = kneed.KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction)
kneepoint = (kneedle.knee, kneedle.knee_y)
return kneepoint
def norm_signal(signal, scaler=25):
max_val = max(signal)
normed_signal = np.zeros(shape=len(signal))
for i, signal_i in enumerate(signal):
normed_signal[i] = signal_i / max_val
normed_signal[i] = normed_signal[i] * scaler
return normed_signal
class PELT:
def __init__(self, **kwargs):
# Defaults von Janis
self.jump = 1
self.refinement_threshold = 100
self.range_min = 0
self.range_max = 100
self.__dict__.update(kwargs)
# signals: a set of uW measurements belonging to a single parameter configuration (i.e., a single by_param entry)
def needs_refinement(self, signals):
count = 0
for signal in signals:
p1, median, p99 = np.percentile(signal, (1, 50, 99))
if median - p1 > self.refinement_threshold:
count += 1
elif p99 - median > self.refinement_threshold:
count += 1
refinement_ratio = count / len(signals)
return refinement_ratio > 0.3
def get_penalty_value(
self, signals, model="l1", min_dist=2, range_min=0, range_max=100, S=1.0
):
# Janis macht hier noch kein norm_signal. Mit sieht es aber genau so brauchbar aus.
signal = norm_signal(signals[0])
algo = ruptures.Pelt(model=model, jump=self.jump, min_size=min_dist).fit(signal)
queue = list()
for i in range(range_min, range_max + 1):
queue.append((algo, i))
with Pool() as pool:
results = pool.starmap(_get_breakpoints, queue)
pen_val = [x[0] for x in results]
changepoint_counts = [x[1] for x in results]
# Scheint unnötig zu sein, da wir ohnehin plateau detection durchführen
# knee = find_knee_point(pen_val, changepoint_counts, S=S)
knee = (0,)
start_index = -1
end_index = -1
longest_start = -1
longest_end = -1
prev_val = -1
for i, num_bkpts in enumerate(changepoint_counts[knee[0] :]):
if num_bkpts != prev_val:
end_index = i - 1
if end_index - start_index > longest_end - longest_start:
# currently found sequence is the longest found yet
longest_start = start_index
longest_end = end_index
start_index = i
if i == len(changepoint_counts[knee[0] :]) - 1:
# end sequence with last value
end_index = i
# # since it is not guaranteed that this is the end of the plateau, assume the mid
# # of the plateau was hit.
# size = end_index - start_index
# end_index = end_index + size
# However this is not the clean solution. Better if search interval is widened
# with range_min and range_max
if end_index - start_index > longest_end - longest_start:
# last found sequence is the longest found yet
longest_start = start_index
longest_end = end_index
start_index = i
prev_val = num_bkpts
mid_of_plat = longest_start + (longest_end - longest_start) // 2
knee = (mid_of_plat + knee[0], changepoint_counts[mid_of_plat + knee[0]])
# modify knee according to options. Defaults to 1 * knee
knee = (knee[0] * 1, knee[1])
return knee
"""
# calculates and returns the necessary penalty for signal. Parallel execution with num_processes many processes
# jump, min_dist are passed directly to PELT. S is directly passed to kneedle.
# pen_modifier is used as a factor on the resulting penalty.
# the interval [range_min, range_max] is used for searching.
def calculate_penalty_value(
signal,
model="l1",
jump=5,
min_dist=2,
range_min=0,
range_max=100,
S=1.0,
pen_modifier=None,
show_plots=False,
):
# default params in Function
if model is None:
model = "l1"
if jump is None:
jump = 5
if min_dist is None:
min_dist = 2
if range_min is None:
range_min = 0
if range_max is None:
range_max = 50
if S is None:
S = 1.0
if pen_modifier is None:
pen_modifier = 1
# change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
# https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
# model = "l1" #"l1" # "l2", "rbf"
algo = ruptures.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)
### CALC BKPS WITH DIFF PENALTYS
if range_max != range_min:
# building args array for parallelizing
args = []
# for displaying progression
m = Manager()
q = m.Queue()
for i in range(range_min, range_max + 1):
# same calculation for all except other penalty
args.append((algo, i, q))
print_info("starting kneepoint calculation.")
# init Pool with num_proesses
with Pool() as p:
# collect results from pool
result = p.starmap_async(get_bkps, args)
# monitor loop
percentage = -100 # Force display of 0%
i = 0
while True:
if result.ready():
break
size = q.qsize()
last_percentage = percentage
percentage = round(size / (range_max - range_min) * 100, 2)
if percentage >= last_percentage + 2 or i >= refresh_thresh:
print_info("Current progress: " + str(percentage) + "%")
i = 0
else:
i += 1
time.sleep(refresh_delay)
res = result.get()
print_info("Finished kneepoint calculation.")
# DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH
# split x and y coords to pass to kneedle
pen_val = [x[0] for x in res]
fitted_bkps_val = [x[1] for x in res]
# # plot to look at res
knee = find_knee_point(pen_val, fitted_bkps_val, S=S)
# TODO: Find plateau on pen_val vs fitted_bkps_val
# scipy.find_peaks() does not find plateaus if they extend through the end of the data.
# to counter that, add one extremely large value to the right side of the data
# after negating it is extremely small -> Almost certainly smaller than the
# found plateau therefore the plateau does not extend through the border
# -> scipy.find_peaks finds it. Choose value from within that plateau.
# fitted_bkps_val.append(100000000)
# TODO: Approaching over find_peaks might not work if the initial decrease step to the
# "correct" number of changepoints and additional decrease steps e.g. underfitting
# take place within the given penalty interval. find_peak only finds plateaus
# of peaks. If the number of chpts decreases after the wanted plateau the condition
# for local peaks is not satisfied anymore. Therefore this approach will only work
# if the plateau extends over the right border of the penalty interval.
# peaks, peak_plateaus = find_peaks(- np.array(fitted_bkps_val), plateau_size=1)
# Since the data is monotonously decreasing only one plateau can be found.
# assuming the plateau is constant, i.e. no noise. OK to assume this here, since num_bkpts
# is monotonously decreasing. If the number of bkpts decreases inside a considered
# plateau, it means that the stable configuration is not yet met. -> Search further
start_index = -1
end_index = -1
longest_start = -1
longest_end = -1
prev_val = -1
for i, num_bkpts in enumerate(fitted_bkps_val[knee[0] :]):
if num_bkpts != prev_val:
end_index = i - 1
if end_index - start_index > longest_end - longest_start:
# currently found sequence is the longest found yet
longest_start = start_index
longest_end = end_index
start_index = i
if i == len(fitted_bkps_val[knee[0] :]) - 1:
# end sequence with last value
end_index = i
# # since it is not guaranteed that this is the end of the plateau, assume the mid
# # of the plateau was hit.
# size = end_index - start_index
# end_index = end_index + size
# However this is not the clean solution. Better if search interval is widened
# with range_min and range_max
if end_index - start_index > longest_end - longest_start:
# last found sequence is the longest found yet
longest_start = start_index
longest_end = end_index
start_index = i
prev_val = num_bkpts
if show_plots:
plt.xlabel("Penalty")
plt.ylabel("Number of Changepoints")
plt.plot(pen_val, fitted_bkps_val)
plt.vlines(
longest_start + knee[0], 0, max(fitted_bkps_val), linestyles="dashed"
)
plt.vlines(
longest_end + knee[0], 0, max(fitted_bkps_val), linestyles="dashed"
)
plt.show()
# choosing pen from plateau
mid_of_plat = longest_start + (longest_end - longest_start) // 2
knee = (mid_of_plat + knee[0], fitted_bkps_val[mid_of_plat + knee[0]])
# modify knee according to options. Defaults to 1 * knee
knee = (knee[0] * pen_modifier, knee[1])
else:
# range_min == range_max. has the same effect as pen_override
knee = (range_min, None)
print_info(str(knee[0]) + " has been selected as penalty.")
if knee[0] is not None:
return knee
print_error(
"With the current thresh-hold S="
+ str(S)
+ " it is not possible to select a penalty value."
)
sys.exit(-1)
"""
|