summaryrefslogtreecommitdiff
path: root/lib/pelt.py
blob: 7f2e9221a5d36553bca6a765d7053681a2e48eda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env python3

import numpy as np
import ruptures
from multiprocessing import Pool

# returns the found changepoints by algo for the specific penalty pen.
# algo should be the return value of Pelt(...).fit(signal)
# Also puts a token in container q to let the progressmeter know the changepoints for penalty pen
# have been calculated.
# used for parallel calculation of changepoints vs penalty
def _get_breakpoints(algo, pen):
    return pen, len(algo.predict(pen=pen))


def find_knee_point(data_x, data_y, S=1.0, curve="convex", direction="decreasing"):
    kneedle = kneed.KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction)
    kneepoint = (kneedle.knee, kneedle.knee_y)
    return kneepoint


def norm_signal(signal, scaler=25):
    max_val = max(signal)
    normed_signal = np.zeros(shape=len(signal))
    for i, signal_i in enumerate(signal):
        normed_signal[i] = signal_i / max_val
        normed_signal[i] = normed_signal[i] * scaler
    return normed_signal


# Scheint Einfluss auf die gefundene Anzahl CHangepoints zu haben. Hrmpf.
# Kann aber auch shitty downsampling sein. Diese Funktion ist _sehr_ quick&dirty.
def coarse_signal(signal, divisor=10):
    ret = list()
    for i in range((len(signal) // divisor)):
        ret.append(np.mean(signal[i * divisor : (i + 1) * divisor]))
    return np.array(ret)


# returns the changepoints found on signal with penalty penalty.
# model, jump and min_dist are directly passed to PELT
def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False):
    # default params in Function
    if model is None:
        model = "l1"
    if jump is None:
        jump = 5
    if min_dist is None:
        min_dist = 2
    if plotting is None:
        plotting = False
    # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
    # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
    # model = "l1"   #"l1"  # "l2", "rbf"
    algo = ruptures.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)

    if penalty is not None:
        bkps = algo.predict(pen=penalty)
        if plotting:
            fig, ax = ruptures.display(signal, bkps)
            plt.show()
        return bkps

    print_error("No Penalty specified.")
    sys.exit(-1)


# calculates the raw_states for measurement measurement. num_measurement is used to identify the
# return value
# penalty, model and jump are directly passed to pelt
def calc_raw_states_func(num_measurement, measurement, penalty, model, jump):
    # extract signal
    signal = np.array(measurement)
    # norm signal to remove dependency on absolute values
    normed_signal = norm_signal(signal)
    # calculate the breakpoints
    bkpts = calc_pelt(normed_signal, penalty, model=model, jump=jump)
    calced_states = list()
    start_time = 0
    end_time = 0
    # calc metrics for all states
    for bkpt in bkpts:
        # start_time of state is end_time of previous one
        # (Transitions are instantaneous)
        start_time = end_time
        end_time = bkpt
        power_vals = signal[start_time:end_time]
        mean_power = np.mean(power_vals)
        std_dev = np.std(power_vals)
        calced_state = (start_time, end_time, mean_power, std_dev)
        calced_states.append(calced_state)
    num = 0
    new_avg_std = 0
    # calc avg std for all states from this measurement
    for s in calced_states:
        # print_info("State " + str(num) + " starts at t=" + str(s[0])
        #            + " and ends at t=" + str(s[1])
        #            + " while using " + str(s[2])
        #            + "uW with  sigma=" + str(s[3]))
        num = num + 1
        new_avg_std = new_avg_std + s[3]
    # check case if no state has been found to avoid crashing
    if len(calced_states) != 0:
        new_avg_std = new_avg_std / len(calced_states)
    else:
        new_avg_std = 0
    change_avg_std = None  # measurement["uW_std"] - new_avg_std
    # print_info("The average standard deviation for the newly found states is "
    #            + str(new_avg_std))
    # print_info("That is a reduction of " + str(change_avg_std))
    return num_measurement, calced_states, new_avg_std, change_avg_std


# parallelize calc over all measurements
def calc_raw_states(arg_list):
    with Pool() as pool:
        # collect results from pool
        result = pool.starmap(calc_raw_states_func, arg_list)
    return result


class PELT:
    def __init__(self, **kwargs):
        # Defaults von Janis
        self.jump = 1
        self.refinement_threshold = 100
        self.range_min = 0
        self.range_max = 100
        self.__dict__.update(kwargs)

    # signals: a set of uW measurements belonging to a single parameter configuration (i.e., a single by_param entry)
    def needs_refinement(self, signals):
        count = 0
        for signal in signals:
            p1, median, p99 = np.percentile(signal, (1, 50, 99))

            if median - p1 > self.refinement_threshold:
                count += 1
            elif p99 - median > self.refinement_threshold:
                count += 1
        refinement_ratio = count / len(signals)
        return refinement_ratio > 0.3

    def get_penalty_value(
        self, signals, model="l1", min_dist=2, range_min=0, range_max=100, S=1.0
    ):
        # Janis macht hier noch kein norm_signal. Mit sieht es aber genau so brauchbar aus.
        # TODO vor der Penaltybestimmung die Auflösung der Daten auf z.B. 1 kHz
        # verringern. Dann geht's deutlich schneller und superkurze
        # Substates interessieren uns ohnehin weniger
        signal = coarse_signal(norm_signal(signals[0]))
        algo = ruptures.Pelt(model=model, jump=self.jump, min_size=min_dist).fit(signal)
        queue = list()
        for i in range(range_min, range_max + 1):
            queue.append((algo, i))
        with Pool() as pool:
            results = pool.starmap(_get_breakpoints, queue)
        pen_val = [x[0] for x in results]
        changepoint_counts = [x[1] for x in results]
        # Scheint unnötig zu sein, da wir ohnehin plateau detection durchführen
        # knee = find_knee_point(pen_val, changepoint_counts, S=S)
        knee = (0,)

        start_index = -1
        end_index = -1
        longest_start = -1
        longest_end = -1
        prev_val = -1
        for i, num_bkpts in enumerate(changepoint_counts[knee[0] :]):
            if num_bkpts != prev_val:
                end_index = i - 1
                if end_index - start_index > longest_end - longest_start:
                    # currently found sequence is the longest found yet
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            if i == len(changepoint_counts[knee[0] :]) - 1:
                # end sequence with last value
                end_index = i
                # # since it is not guaranteed that this is the end of the plateau, assume the mid
                # # of the plateau was hit.
                # size = end_index - start_index
                # end_index = end_index + size
                # However this is not the clean solution. Better if search interval is widened
                # with range_min and range_max
                if end_index - start_index > longest_end - longest_start:
                    # last found sequence is the longest found yet
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            prev_val = num_bkpts
        mid_of_plat = longest_start + (longest_end - longest_start) // 2
        knee = (mid_of_plat + knee[0], changepoint_counts[mid_of_plat + knee[0]])

        # modify knee according to options. Defaults to 1 * knee
        knee = (knee[0] * 1, knee[1])
        return knee

    def calc_raw_states(self, signals, penalty, opt_model=None):
        raw_states_calc_args = list()
        for num_measurement, measurement in enumerate(signals):
            raw_states_calc_args.append(
                (num_measurement, measurement, penalty, opt_model, self.jump)
            )

        raw_states_list = [None] * len(signals)
        raw_states_res = calc_raw_states(raw_states_calc_args)

        # extracting result and putting it in correct order -> index of raw_states_list
        # entry still corresponds with index of measurement in measurements_by_states
        # -> If measurements are discarded the used ones are easily recognized
        for ret_val in raw_states_res:
            num_measurement = ret_val[0]
            raw_states = ret_val[1]
            avg_std = ret_val[2]
            change_avg_std = ret_val[3]
            # FIXME: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
            #   int sein oder nicht? Es scheint auch vernünftig zu klappen...
            raw_states_list[num_measurement] = raw_states
            # print(
            #    "The average standard deviation for the newly found states in "
            #    + "measurement No. "
            #    + str(num_measurement)
            #    + " is "
            #    + str(avg_std)
            # )
            # print("That is a reduction of " + str(change_avg_std))
            for i, raw_state in enumerate(raw_states):
                print(
                    f"Measurement #{num_measurement} sub-state #{i}: {raw_state[0]} -> {raw_state[1]}, mean {raw_state[2]}"
                )
            # l_signal = measurements_by_config['offline'][num_measurement]['uW']
            # l_bkpts = [s[1] for s in raw_states]
            # fig, ax = rpt.display(np.array(l_signal), l_bkpts)
            # plt.show()

    """
    # calculates and returns the necessary penalty for signal. Parallel execution with num_processes many processes
    # jump, min_dist are passed directly to PELT. S is directly passed to kneedle.
    # pen_modifier is used as a factor on the resulting penalty.
    # the interval [range_min, range_max] is used for searching.
    def calculate_penalty_value(
        signal,
        model="l1",
        jump=5,
        min_dist=2,
        range_min=0,
        range_max=100,
        S=1.0,
        pen_modifier=None,
        show_plots=False,
    ):
        # default params in Function
        if model is None:
            model = "l1"
        if jump is None:
            jump = 5
        if min_dist is None:
            min_dist = 2
        if range_min is None:
            range_min = 0
        if range_max is None:
            range_max = 50
        if S is None:
            S = 1.0
        if pen_modifier is None:
            pen_modifier = 1
        # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
        # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
        # model = "l1"   #"l1"  # "l2", "rbf"
        algo = ruptures.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)

        ### CALC BKPS WITH DIFF PENALTYS
        if range_max != range_min:
            # building args array for parallelizing
            args = []
            # for displaying progression
            m = Manager()
            q = m.Queue()

            for i in range(range_min, range_max + 1):
                # same calculation for all except other penalty
                args.append((algo, i, q))

            print_info("starting kneepoint calculation.")
            # init Pool with num_proesses
            with Pool() as p:
                # collect results from pool
                result = p.starmap_async(get_bkps, args)
                # monitor loop
                percentage = -100  # Force display of 0%
                i = 0
                while True:
                    if result.ready():
                        break

                    size = q.qsize()
                    last_percentage = percentage
                    percentage = round(size / (range_max - range_min) * 100, 2)
                    if percentage >= last_percentage + 2 or i >= refresh_thresh:
                        print_info("Current progress: " + str(percentage) + "%")
                        i = 0
                    else:
                        i += 1
                    time.sleep(refresh_delay)
                res = result.get()
            print_info("Finished kneepoint calculation.")
            # DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH
            # split x and y coords to pass to kneedle
            pen_val = [x[0] for x in res]
            fitted_bkps_val = [x[1] for x in res]
            # # plot to look at res
            knee = find_knee_point(pen_val, fitted_bkps_val, S=S)

            # TODO: Find plateau on pen_val vs fitted_bkps_val
            #   scipy.find_peaks() does not find plateaus if they extend through the end of the data.
            #   to counter that, add one extremely large value to the right side of the data
            #   after negating it is extremely small -> Almost certainly smaller than the
            #   found plateau therefore the plateau does not extend through the border
            #   -> scipy.find_peaks finds it. Choose value from within that plateau.
            # fitted_bkps_val.append(100000000)
            # TODO: Approaching over find_peaks might not work if the initial decrease step to the
            #   "correct" number of changepoints and additional decrease steps e.g. underfitting
            #   take place within the given penalty interval. find_peak only finds plateaus
            #   of peaks. If the number of chpts decreases after the wanted plateau the condition
            #   for local peaks is not satisfied anymore. Therefore this approach will only work
            #   if the plateau extends over the right border of the penalty interval.
            # peaks, peak_plateaus = find_peaks(- np.array(fitted_bkps_val), plateau_size=1)
            # Since the data is monotonously decreasing only one plateau can be found.

            # assuming the plateau is constant, i.e. no noise. OK to assume this here, since num_bkpts
            # is monotonously decreasing. If the number of bkpts decreases inside a considered
            # plateau, it means that the stable configuration is not yet met. -> Search further
            start_index = -1
            end_index = -1
            longest_start = -1
            longest_end = -1
            prev_val = -1
            for i, num_bkpts in enumerate(fitted_bkps_val[knee[0] :]):
                if num_bkpts != prev_val:
                    end_index = i - 1
                    if end_index - start_index > longest_end - longest_start:
                        # currently found sequence is the longest found yet
                        longest_start = start_index
                        longest_end = end_index
                    start_index = i
                if i == len(fitted_bkps_val[knee[0] :]) - 1:
                    # end sequence with last value
                    end_index = i
                    # # since it is not guaranteed that this is the end of the plateau, assume the mid
                    # # of the plateau was hit.
                    # size = end_index - start_index
                    # end_index = end_index + size
                    # However this is not the clean solution. Better if search interval is widened
                    # with range_min and range_max
                    if end_index - start_index > longest_end - longest_start:
                        # last found sequence is the longest found yet
                        longest_start = start_index
                        longest_end = end_index
                    start_index = i
                prev_val = num_bkpts
            if show_plots:
                plt.xlabel("Penalty")
                plt.ylabel("Number of Changepoints")
                plt.plot(pen_val, fitted_bkps_val)
                plt.vlines(
                    longest_start + knee[0], 0, max(fitted_bkps_val), linestyles="dashed"
                )
                plt.vlines(
                    longest_end + knee[0], 0, max(fitted_bkps_val), linestyles="dashed"
                )
                plt.show()
            # choosing pen from plateau
            mid_of_plat = longest_start + (longest_end - longest_start) // 2
            knee = (mid_of_plat + knee[0], fitted_bkps_val[mid_of_plat + knee[0]])

            # modify knee according to options. Defaults to 1 * knee
            knee = (knee[0] * pen_modifier, knee[1])

        else:
            # range_min == range_max. has the same effect as pen_override
            knee = (range_min, None)
        print_info(str(knee[0]) + " has been selected as penalty.")
        if knee[0] is not None:
            return knee

        print_error(
            "With the current thresh-hold S="
            + str(S)
            + " it is not possible to select a penalty value."
        )
        sys.exit(-1)
    """