1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
#!/usr/bin/env python3
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def flatten(somelist):
return [item for sublist in somelist for item in sublist]
def is_state(aggregate, name):
return aggregate[name]['isa'] == 'state' and name != 'UNINITIALIZED'
def plot_states(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
data = [aggregate[key]['means'] for key in keys]
mdata = [int(model['state'][key]['power']['static']) for key in keys]
boxplot(keys, mdata, None, data, 'Zustand', 'µW')
def plot_transitions(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
data = [aggregate[key]['rel_energies'] for key in keys]
mdata = [int(model['transition'][key]['rel_energy']['static']) for key in keys]
boxplot(keys, mdata, None, data, 'Transition', 'pJ (rel)')
data = [aggregate[key]['energies'] for key in keys]
mdata = [int(model['transition'][key]['energy']['static']) for key in keys]
boxplot(keys, mdata, None, data, 'Transition', 'pJ')
def plot_states_duration(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
data = [aggregate[key]['durations'] for key in keys]
boxplot(keys, None, None, data, 'Zustand', 'µs')
def plot_transitions_duration(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
data = [aggregate[key]['durations'] for key in keys]
boxplot(keys, None, None, data, 'Transition', 'µs')
def plot_transitions_timeout(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
data = [aggregate[key]['timeouts'] for key in keys]
boxplot(keys, None, None, data, 'Timeout', 'µs')
def plot_states_clips(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys]
boxplot(keys, None, None, data, 'Zustand', '% Clipping')
def plot_transitions_clips(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys]
boxplot(keys, None, None, data, 'Transition', '% Clipping')
def plot_substate_thresholds(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
data = [aggregate[key]['sub_thresholds'] for key in keys]
boxplot(keys, None, None, data, 'Zustand', 'substate threshold (mW/dmW)')
def plot_histogram(data):
n, bins, patches = plt.hist(data, 1000, normed=1, facecolor='green', alpha=0.75)
plt.show()
def plot_states_param(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED']
data = [aggregate[key]['means'] for key in keys]
mdata = [int(model['state'][key[0]]['power']['static']) for key in keys]
boxplot(keys, mdata, None, data, 'Transition', 'µW')
def plot_substate_thresholds_p(model, aggregate):
keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED']
data = [aggregate[key]['sub_thresholds'] for key in keys]
boxplot(keys, None, None, data, 'Zustand', '% Clipping')
def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X, Y, xaxis=None, yaxis=None):
fig, ax1 = plt.subplots(figsize=(10,6))
fig.canvas.set_window_title("fit %s" % (function))
plt.subplots_adjust(left=0.14, right=0.99, top=0.99, bottom=0.14)
xsp = np.linspace(X[index].min(), X[index].max(), 100)
if xaxis != None:
ax1.set_xlabel(xaxis)
else:
ax1.set_xlabel(parameters[index])
if yaxis != None:
ax1.set_ylabel(yaxis)
else:
ax1.set_ylabel('%s %s' % (name, datatype))
otherparams = list(set(itertools.product(*X[:index], *X[index+1:])))
cm = plt.get_cmap('brg', len(otherparams))
for i in range(len(otherparams)):
elem = otherparams[i]
color = cm(i)
tt = np.full((len(X[index])), True, dtype=bool)
for k in range(len(parameters)):
if k < index:
tt &= X[k] == elem[k]
elif k > index:
tt &= X[k] == elem[k-1]
plt.plot(X[index][tt], Y[tt], "rx", color=color)
xarg = [np.array([x] * 100) for x in elem[:index]]
xarg.append(xsp)
xarg.extend([np.array([x] * 100) for x in elem[index:]])
plt.plot(xsp, fitfunc(funp, xarg), "r-", color=color)
plt.show()
def boxplot(ticks, modeldata, onlinedata, mimosadata, xlabel, ylabel):
fig, ax1 = plt.subplots(figsize=(10,6))
fig.canvas.set_window_title('DriverEval')
plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1)
bp = plt.boxplot(mimosadata, notch=0, sym='+', vert=1, whis=1.5)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], color='red', marker='+')
ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)
ax1.set_axisbelow(True)
#ax1.set_title('DriverEval')
ax1.set_xlabel(xlabel)
ax1.set_ylabel(ylabel)
numBoxes = len(mimosadata)
xtickNames = plt.setp(ax1, xticklabels=ticks)
plt.setp(xtickNames, rotation=0, fontsize=10)
boxColors = ['darkkhaki', 'royalblue']
medians = list(range(numBoxes))
for i in range(numBoxes):
box = bp['boxes'][i]
boxX = []
boxY = []
for j in range(5):
boxX.append(box.get_xdata()[j])
boxY.append(box.get_ydata()[j])
boxCoords = list(zip(boxX, boxY))
# Alternate between Dark Khaki and Royal Blue
k = i % 2
boxPolygon = Polygon(boxCoords, facecolor=boxColors[k])
#ax1.add_patch(boxPolygon)
# Now draw the median lines back over what we just filled in
med = bp['medians'][i]
medianX = []
medianY = []
for j in range(2):
medianX.append(med.get_xdata()[j])
medianY.append(med.get_ydata()[j])
plt.plot(medianX, medianY, 'k')
medians[i] = medianY[0]
# Finally, overplot the sample averages, with horizontal alignment
# in the center of each box
plt.plot([np.average(med.get_xdata())], [np.average(mimosadata[i])],
color='w', marker='*', markeredgecolor='k')
if modeldata:
plt.plot([np.average(med.get_xdata())], [modeldata[i]],
color='w', marker='o', markeredgecolor='k')
pos = np.arange(numBoxes) + 1
upperLabels = [str(np.round(s, 2)) for s in medians]
weights = ['bold', 'semibold']
for tick, label in zip(range(numBoxes), ax1.get_xticklabels()):
k = tick % 2
y0, y1 = ax1.get_ylim()
textpos = y0 + (y1 - y0)*0.97
ypos = ax1.get_ylim()[0]
ax1.text(pos[tick], textpos, upperLabels[tick],
horizontalalignment='center', size='small',
color='royalblue')
plt.show()
|