summaryrefslogtreecommitdiff
path: root/lib/size_to_radio_energy.py
blob: 10de1a301a39ba7f1c6796a79c76a4e750660b84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
"""
Convert data length to radio TX/RX energy.

Contains classes for some embedded CPUs/MCUs. Given a configuration, each
class can convert a cycle count to an energy consumption.
"""

import numpy as np


def get_class(radio_name: str):
    """Return model class for radio_name."""
    if radio_name == "CC1200tx":
        return CC1200tx
    if radio_name == "CC1200rx":
        return CC1200rx
    if radio_name == "NRF24L01tx":
        return NRF24L01tx
    if radio_name == "NRF24L01dtx":
        return NRF24L01dtx
    if radio_name == "esp8266dtx":
        return ESP8266dtx
    if radio_name == "esp8266drx":
        return ESP8266drx


def _param_list_to_dict(device, param_list):
    param_dict = dict()
    for i, parameter in enumerate(sorted(device.parameters.keys())):
        param_dict[parameter] = param_list[i]
    return param_dict


class CC1200tx:
    """CC1200 TX energy based on aemr measurements."""

    name = "CC1200tx"
    parameters = {
        "symbolrate": [6, 12, 25, 50, 100, 200, 250],  # ksps
        "txbytes": [],
        "txpower": [10, 20, 30, 40, 47],  # dBm = f(txpower)
    }
    default_params = {
        "symbolrate": 100,
        "txpower": 47,
    }

    @staticmethod
    def get_energy(params: dict):
        if type(params) != dict:
            return CC1200tx.get_energy(_param_list_to_dict(CC1200tx, params))

        # Mittlere TX-Leistung, gefitted von AEMR
        # Messdaten erhoben bei 3.6V
        power = 8.18053941e04
        power -= 1.24208376e03 * np.sqrt(params["symbolrate"])
        power -= 5.73742779e02 * np.log(params["txbytes"])
        power += 1.76945886e01 * (params["txpower"]) ** 2
        power += (
            2.33469617e02 * np.sqrt(params["symbolrate"]) * np.log(params["txbytes"])
        )
        power -= (
            6.99137635e-01 * np.sqrt(params["symbolrate"]) * (params["txpower"]) ** 2
        )
        power -= 3.31365158e-01 * np.log(params["txbytes"]) * (params["txpower"]) ** 2
        power += (
            1.32784945e-01
            * np.sqrt(params["symbolrate"])
            * np.log(params["txbytes"])
            * (params["txpower"]) ** 2
        )

        # txDone-Timeout, gefitted von AEMR
        duration = 3.65513500e02
        duration += 8.01016526e04 * 1 / (params["symbolrate"])
        duration -= 7.06364515e-03 * params["txbytes"]
        duration += 8.00029860e03 * 1 / (params["symbolrate"]) * params["txbytes"]

        # TX-Energie, gefitted von AEMR
        # Achtung: Energy ist in µJ, nicht (wie in AEMR-Transitionsmodellen üblich) in pJ
        # Messdaten erhoben bei 3.6V

        energy = 1.74383259e01
        energy += 6.29922138e03 * 1 / (params["symbolrate"])
        energy += 1.13307135e-02 * params["txbytes"]
        energy -= 1.28121377e-04 * (params["txpower"]) ** 2
        energy += 6.29080184e02 * 1 / (params["symbolrate"]) * params["txbytes"]
        energy += 1.25647926e00 * 1 / (params["symbolrate"]) * (params["txpower"]) ** 2
        energy += 1.31996202e-05 * params["txbytes"] * (params["txpower"]) ** 2
        energy += (
            1.25676966e-01
            * 1
            / (params["symbolrate"])
            * params["txbytes"]
            * (params["txpower"]) ** 2
        )

        return energy * 1e-6

    @staticmethod
    def get_energy_per_byte(params):
        A = 8.18053941e04
        A -= 1.24208376e03 * np.sqrt(params["symbolrate"])
        A += 1.76945886e01 * (params["txpower"]) ** 2
        A -= 6.99137635e-01 * np.sqrt(params["symbolrate"]) * (params["txpower"]) ** 2
        B = -5.73742779e02
        B += 2.33469617e02 * np.sqrt(params["symbolrate"])
        B -= 3.31365158e-01 * (params["txpower"]) ** 2
        B += 1.32784945e-01 * np.sqrt(params["symbolrate"]) * (params["txpower"]) ** 2
        C = 3.65513500e02
        C += 8.01016526e04 * 1 / (params["symbolrate"])
        D = -7.06364515e-03
        D += 8.00029860e03 * 1 / (params["symbolrate"])

        x = params["txbytes"]

        # in pJ
        de_dx = A * D + B * C * 1 / x + B * D * (np.log(x) + 1)

        # in µJ
        de_dx = 1.13307135e-02
        de_dx += 6.29080184e02 * 1 / (params["symbolrate"])
        de_dx += 1.31996202e-05 * (params["txpower"]) ** 2
        de_dx += 1.25676966e-01 * 1 / (params["symbolrate"]) * (params["txpower"]) ** 2

        # de_dx = (B * 1/x) * (C + D * x) + (A + B * np.log(x)) * D

        return de_dx * 1e-6


class CC1200rx:
    """CC1200 RX energy based on aemr measurements."""

    name = "CC1200rx"
    parameters = {
        "symbolrate": [6, 12, 25, 50, 100, 200, 250],  # ksps
        "txbytes": [],
        "txpower": [10, 20, 30, 40, 47],  # dBm = f(txpower)
    }
    default_params = {
        "symbolrate": 100,
        "txpower": 47,
    }

    @staticmethod
    def get_energy(params):
        # TODO
        return params["txbytes"] * CC1200rx.get_energy_per_byte(params)

    @staticmethod
    def get_energy_per_byte(params):
        # RX        : 0 + regression_arg(0) + regression_arg(1) * np.log(parameter(symbolrate) + 1)
        # [84414.91636169   205.63323036]

        de_dx = (
            (84414.91636169 + 205.63323036 * np.log(params["symbolrate"] + 1))
            * 8000
            / params["symbolrate"]
        )

        return de_dx * 1e-12


class NRF24L01rx:
    """NRF24L01+ RX energy based on aemr measurements (using variable packet size)"""

    name = "NRF24L01"
    parameters = {
        "datarate": [250, 1000, 2000],  # kbps
        "txbytes": [],
        "txpower": [-18, -12, -6, 0],  # dBm
        "voltage": [1.9, 3.6],
    }
    default_params = {
        "datarate": 1000,
        "txpower": -6,
        "voltage": 3,
    }

    @staticmethod
    def get_energy_per_byte(params):
        # RX        : 0 + regression_arg(0) + regression_arg(1) * np.sqrt(parameter(datarate))
        #     [48530.73235537   117.25274402]

        de_dx = (
            (48530.73235537 + 117.25274402 * np.sqrt(params["datarate"]))
            * 8000
            / params["datarate"]
        )

        return de_dx * 1e-12


# PYTHONPATH=lib bin/analyze-archive.py --show-model=all --show-quality=table ../data/*_RF24_no_retries.tar
class NRF24L01tx:
    """NRF24L01+ TX(*) energy based on aemr measurements (32B fixed packet size, (*)ack-await, no retries)."""

    name = "NRF24L01"
    parameters = {
        "datarate": [250, 1000, 2000],  # kbps
        "txbytes": [],
        "txpower": [-18, -12, -6, 0],  # dBm
        "voltage": [1.9, 3.6],
    }
    default_params = {
        "datarate": 1000,
        "txpower": -6,
        "voltage": 3,
    }

    # AEMR:
    # TX power / energy:
    # TX        : 0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) + regression_arg(2) * (19.47+parameter(txpower))**2 + regression_arg(3) * 1/(parameter(datarate)) * (19.47+parameter(txpower))**2
    #            [6.30323056e+03 2.59889924e+06 7.82186268e+00 8.69746093e+03]
    # TX        : 0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) + regression_arg(2) * (19.47+parameter(txpower))**2 + regression_arg(3) * 1/(parameter(datarate)) * (19.47+parameter(txpower))**2
    #            [7.67932887e+00 1.02969455e+04 4.55116475e-03 2.99786534e+01]
    # epilogue  : timeout   : 0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate))
    #            [  1624.06589147 332251.93798766]

    @staticmethod
    def get_energy(params):
        if type(params) != dict:
            return NRF24L01tx.get_energy(_param_list_to_dict(NRF24L01tx, params))

        # TX-Leistung, gefitted von AEMR
        # Messdaten erhoben bei 3.6V
        power = 6.30323056e03
        power += 2.59889924e06 * 1 / params["datarate"]
        power += 7.82186268e00 * (19.47 + params["txpower"]) ** 2
        power += (
            8.69746093e03 * 1 / params["datarate"] * (19.47 + params["txpower"]) ** 2
        )

        # TX-Dauer, gefitted von AEMR
        duration = 1624.06589147
        duration += 332251.93798766 * 1 / params["datarate"]

        # TX-Energie, gefitted von AEMR
        # Achtung: Energy ist in µJ, nicht (wie in AEMR-Transitionsmodellen üblich) in pJ
        # Messdaten erhoben bei 3.6V
        energy = 7.67932887e00
        energy += 1.02969455e04 * 1 / params["datarate"]
        energy += 4.55116475e-03 * (19.47 + params["txpower"]) ** 2
        energy += (
            2.99786534e01 * 1 / params["datarate"] * (19.47 + params["txpower"]) ** 2
        )

        energy = power * 1e-6 * duration * 1e-6 * np.ceil(params["txbytes"] / 32)

        return energy

    @staticmethod
    def get_energy_per_byte(params):
        if type(params) != dict:
            return NRF24L01tx.get_energy_per_byte(
                _param_list_to_dict(NRF24L01tx, params)
            )

        # in µJ
        de_dx = 0


class NRF24L01dtx:
    """nRF24L01+ TX energy based on datasheet values (probably unerestimated)"""

    name = "NRF24L01"
    parameters = {
        "datarate": [250, 1000, 2000],  # kbps
        "txbytes": [],
        "txpower": [-18, -12, -6, 0],  # dBm
        "voltage": [1.9, 3.6],
    }
    default_params = {
        "datarate": 1000,
        "txpower": -6,
        "voltage": 3,
    }

    # 130 us RX settling: 8.9 mE
    # 130 us TX settling: 8 mA

    @staticmethod
    def get_energy(params):
        if type(params) != dict:
            return NRF24L01dtx.get_energy(_param_list_to_dict(NRF24L01dtx, params))

        header_bytes = 7

        # TX settling: 130 us @ 8 mA
        energy = 8e-3 * params["voltage"] * 130e-6

        if params["txpower"] == -18:
            current = 7e-3
        elif params["txpower"] == -12:
            current = 7.5e-3
        elif params["txpower"] == -6:
            current = 9e-3
        elif params["txpower"] == 0:
            current = 11.3e-3

        energy += (
            current
            * params["voltage"]
            * ((header_bytes + params["txbytes"]) * 8 / (params["datarate"] * 1e3))
        )

        return energy


class ESP8266dtx:
    """esp8266 TX energy based on (hardly documented) datasheet values"""

    name = "esp8266"
    parameters = {
        "voltage": [2.5, 3.0, 3.3, 3.6],
        "txbytes": [],
        "bitrate": [65e6],
        "tx_current": [120e-3],
    }
    default_params = {"voltage": 3, "bitrate": 65e6, "tx_current": 120e-3}

    @staticmethod
    def get_energy(params):
        # TODO
        return 0

    @staticmethod
    def get_energy_per_byte(params):
        if type(params) != dict:
            return ESP8266dtx.get_energy_per_byte(
                _param_list_to_dict(ESP8266dtx, params)
            )

        # TX in 802.11n MCS7 -> 64QAM, 65/72.2 Mbit/s @ 20MHz channel, 135/150 Mbit/s @ 40MHz
        # -> Value for 65 Mbit/s @ 20MHz channel
        return params["tx_current"] * params["voltage"] / params["bitrate"]


class ESP8266drx:
    """esp8266 RX energy based on (hardly documented) datasheet values"""

    name = "esp8266"
    parameters = {
        "voltage": [2.5, 3.0, 3.3, 3.6],
        "txbytes": [],
        "bitrate": [65e6],
        "rx_current": [56e-3],
    }
    default_params = {"voltage": 3, "bitrate": 65e6, "rx_current": 56e-3}

    @staticmethod
    def get_energy(params):
        # TODO
        return 0

    @staticmethod
    def get_energy_per_byte(params):
        if type(params) != dict:
            return ESP8266drx.get_energy_per_byte(
                _param_list_to_dict(ESP8266drx, params)
            )

        # TX in 802.11n MCS7 -> 64QAM, 65/72.2 Mbit/s @ 20MHz channel, 135/150 Mbit/s @ 40MHz
        # -> Value for 65 Mbit/s @ 20MHz channel
        return params["rx_current"] * params["voltage"] / params["bitrate"]