1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
"""
Convert data length to radio TX/RX energy.
Contains classes for some embedded CPUs/MCUs. Given a configuration, each
class can convert a cycle count to an energy consumption.
"""
import numpy as np
def get_class(radio_name: str):
"""Return model class for radio_name."""
if radio_name == 'CC1200tx':
return CC1200tx
if radio_name == 'NRF24L01tx':
return NRF24L01tx
if radio_name == 'NRF24L01dtx':
return NRF24L01dtx
def _param_list_to_dict(device, param_list):
param_dict = dict()
for i, parameter in enumerate(sorted(device.parameters.keys())):
param_dict[parameter] = param_list[i]
return param_dict
class CC1200tx:
"""CC1200 TX energy based on aemr measurements."""
name = 'CC1200tx'
parameters = {
'symbolrate' : [6, 12, 25, 50, 100, 200, 250], # ksps
'txbytes' : [],
'txpower' : [10, 20, 30, 40, 47], # dBm = f(txpower)
}
default_params = {
'symbolrate' : 100,
'txpower' : 47,
}
def get_energy(params):
if type(params) != dict:
return CC1200tx.get_energy(_param_list_to_dict(CC1200tx, params))
# Mittlere TX-Leistung, gefitted von AEMR
power = 8.18053941e+04
power -= 1.24208376e+03 * np.sqrt(params['symbolrate'])
power -= 5.73742779e+02 * np.log(params['txbytes'])
power += 1.76945886e+01 * (params['txpower'])**2
power += 2.33469617e+02 * np.sqrt(params['symbolrate']) * np.log(params['txbytes'])
power -= 6.99137635e-01 * np.sqrt(params['symbolrate']) * (params['txpower'])**2
power -= 3.31365158e-01 * np.log(params['txbytes']) * (params['txpower'])**2
power += 1.32784945e-01 * np.sqrt(params['symbolrate']) * np.log(params['txbytes']) * (params['txpower'])**2
# txDone-Timeout, gefitted von AEMR
duration = 3.65513500e+02
duration += 8.01016526e+04 * 1/(params['symbolrate'])
duration -= 7.06364515e-03 * params['txbytes']
duration += 8.00029860e+03 * 1/(params['symbolrate']) * params['txbytes']
# TX-Energie, gefitted von AEMR
# Achtung: Energy ist in µJ, nicht (wie in AEMR-Transitionsmodellen üblich) in pJ
energy = 1.74383259e+01
energy += 6.29922138e+03 * 1/(params['symbolrate'])
energy += 1.13307135e-02 * params['txbytes']
energy -= 1.28121377e-04 * (params['txpower'])**2
energy += 6.29080184e+02 * 1/(params['symbolrate']) * params['txbytes']
energy += 1.25647926e+00 * 1/(params['symbolrate']) * (params['txpower'])**2
energy += 1.31996202e-05 * params['txbytes'] * (params['txpower'])**2
energy += 1.25676966e-01 * 1/(params['symbolrate']) * params['txbytes'] * (params['txpower'])**2
return energy * 1e-6
def get_energy_per_byte(params):
A = 8.18053941e+04
A -= 1.24208376e+03 * np.sqrt(params['symbolrate'])
A += 1.76945886e+01 * (params['txpower'])**2
A -= 6.99137635e-01 * np.sqrt(params['symbolrate']) * (params['txpower'])**2
B = -5.73742779e+02
B += 2.33469617e+02 * np.sqrt(params['symbolrate'])
B -= 3.31365158e-01 * (params['txpower'])**2
B += 1.32784945e-01 * np.sqrt(params['symbolrate']) * (params['txpower'])**2
C = 3.65513500e+02
C += 8.01016526e+04 * 1/(params['symbolrate'])
D = -7.06364515e-03
D += 8.00029860e+03 * 1/(params['symbolrate'])
x = params['txbytes']
# in pJ
de_dx = A * D + B * C * 1/x + B * D * (np.log(x) + 1)
# in µJ
de_dx = 1.13307135e-02
de_dx += 6.29080184e+02 * 1/(params['symbolrate'])
de_dx += 1.31996202e-05 * (params['txpower'])**2
de_dx += 1.25676966e-01 * 1/(params['symbolrate']) * (params['txpower'])**2
#de_dx = (B * 1/x) * (C + D * x) + (A + B * np.log(x)) * D
return de_dx * 1e-6
class NRF24L01tx:
"""NRF24L01+ TX energy based on aemr measurements (32B fixed packet size, ack-await, no retries)."""
name = 'NRF24L01'
parameters = {
'datarate' : [250, 1000, 2000], # kbps
'txbytes' : [],
'txpower' : [-18, -12, -6, 0], # dBm
'voltage' : [1.9, 3.6],
}
default_params = {
'datarate' : 1000,
'txpower' : -6,
'voltage' : 3,
}
def get_energy(params):
if type(params) != dict:
return NRF24L01tx.get_energy(_param_list_to_dict(NRF24L01tx, params))
power = 6.30323056e+03
power += 2.59889924e+06 * 1/params['datarate']
power += 7.82186268e+00 * (19.47+params['txpower'])**2
power += 8.69746093e+03 * 1/params['datarate'] * (19.47+params['txpower'])**2
duration = 1624.06589147
duration += 332251.93798766 * 1/params['datarate']
energy = power * 1e-6 * duration * 1e-6 * np.ceil(params['txbytes'] / 32)
return energy
class NRF24L01dtx:
"""nRF24L01+ TX energy based on datasheet values (probably unerestimated)"""
name = 'NRF24L01'
parameters = {
'datarate' : [250, 1000, 2000], # kbps
'txbytes' : [],
'txpower' : [-18, -12, -6, 0], # dBm
'voltage' : [1.9, 3.6],
}
default_params = {
'datarate' : 1000,
'txpower' : -6,
'voltage' : 3,
}
# 130 us RX settling: 8.9 mE
# 130 us TX settling: 8 mA
def get_energy(params):
if type(params) != dict:
return NRF24L01dtx.get_energy(_param_list_to_dict(NRF24L01dtx, params))
header_bytes = 7
# TX settling: 130 us @ 8 mA
energy = 8e-3 * params['voltage'] * 130e-6
if params['txpower'] == -18:
current = 7e-3
elif params['txpower'] == -12:
current = 7.5e-3
elif params['txpower'] == -6:
current = 9e-3
elif params['txpower'] == 0:
current = 11.3e-3
energy += current * params['voltage'] * ((header_bytes + params['txbytes']) * 8 / (params['datarate'] * 1e3))
return energy
|