1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
import numpy as np
import re
arg_support_enabled = True
def vprint(verbose, string):
"""
Print string if verbose.
Prints string if verbose is a True value
"""
if verbose:
print(string)
def is_numeric(n):
"""Check if n is numeric (i.e., can be converted to int)."""
if n == None:
return False
try:
int(n)
return True
except ValueError:
return False
def float_or_nan(n):
"""Convert to float (if numeric) or NaN."""
if n == None:
return np.nan
try:
return float(n)
except ValueError:
return np.nan
def soft_cast_int(n):
"""
Convert to int, if possible.
If it is empty, returns None.
If it is not numeric, it is left unchanged.
"""
if n == None or n == '':
return None
try:
return int(n)
except ValueError:
return n
def soft_cast_float(n):
"""
Convert to float, if possible.
If it is empty, returns None.
If it is not numeric, it is left unchanged.
"""
if n == None or n == '':
return None
try:
return float(n)
except ValueError:
return n
def flatten(somelist):
"""
Flatten a list.
Example: flatten([[1, 2], [3], [4, 5]]) -> [1, 2, 3, 4, 5]
"""
return [item for sublist in somelist for item in sublist]
def parse_conf_str(conf_str):
conf_dict = dict()
for option in conf_str.split(','):
key, value = option.split('=')
conf_dict[key] = soft_cast_float(value)
return conf_dict
def param_slice_eq(a, b, index):
"""
Check if by_param keys a and b are identical, ignoring the parameter at index.
parameters:
a, b -- (state/transition name, [parameter0 value, parameter1 value, ...])
index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.)
Returns True iff a and b have the same state/transition name, and all
parameters at positions != index are identical.
example:
('foo', [1, 4]), ('foo', [2, 4]), 0 -> True
('foo', [1, 4]), ('foo', [2, 4]), 1 -> False
"""
if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]:
return True
return False
def compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_trans, attribute, verbose = False):
"""
Compute standard deviation and correlation coefficient for various data partitions.
It is strongly recommended to vary all parameter values evenly across partitions.
For instance, given two parameters, providing only the combinations
(1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results.
It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values)
arguments:
by_name -- ground truth partitioned by state/transition name.
by_name[state_or_trans][attribute] must be a list or 1-D numpy array.
by_name[state_or_trans]['param'] must be a list of parameter values
corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the
first ground truth element has the (lexically) first parameter set to 1,
the second to 2 and the third to 3.
by_param -- ground truth partitioned by state/transition name and parameters.
by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array.
parameter_names -- list of parameter names, must have the same order as the parameter
values in by_param (lexical sorting is recommended).
arg_count -- dict providing the number of functions args ("local parameters") for each function.
state_or_trans -- state or transition name, e.g. 'send' or 'TX'
attribute -- model attribute, e.g. 'power' or 'duration'
verbose -- print warning if some parameter partitions are too small for fitting
returns a dict with the following content:
std_static -- static parameter-unaware model error: stddev of by_name[state_or_trans][attribute]
std_param_lut -- static parameter-aware model error: mean stddev of by_param[(state_or_trans, *)][attribute]
std_by_param -- static parameter-aware model error ignoring a single parameter.
dictionary with one key per parameter. The value is the mean stddev
of measurements where all other parameters are fixed and the parameter
in question is variable. E.g. std_by_param['X'] is the mean stddev of
by_param[(state_or_trans, (X=*, Y=..., Z=...))][attribute].
std_by_arg -- same, but ignoring a single function argument
Only set if state_or_trans appears in arg_count, empty dict otherwise.
corr_by_param -- correlation coefficient
corr_by_arg -- same, but ignoring a single function argument
Only set if state_or_trans appears in arg_count, empty dict otherwise.
"""
ret = {
'std_static' : np.std(by_name[state_or_trans][attribute]),
'std_param_lut' : np.mean([np.std(by_param[x][attribute]) for x in by_param.keys() if x[0] == state_or_trans]),
'std_by_param' : {},
'std_by_arg' : [],
'corr_by_param' : {},
'corr_by_arg' : [],
}
np.seterr('raise')
for param_idx, param in enumerate(parameter_names):
ret['std_by_param'][param] = _mean_std_by_param(by_param, state_or_trans, attribute, param_idx, verbose)
ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx)
if arg_support_enabled and state_or_trans in arg_count:
for arg_index in range(arg_count[state_or_trans]):
ret['std_by_arg'].append(_mean_std_by_param(by_param, state_or_trans, attribute, len(parameter_names) + arg_index, verbose))
ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, attribute, len(parameter_names) + arg_index))
return ret
def _mean_std_by_param(by_param, state_or_tran, attribute, param_index, verbose = False):
u"""
Calculate the mean standard deviation for a static model where all parameters but param_index are constant.
arguments:
by_param -- measurements sorted by key/transition name and parameter values
state_or_tran -- state or transition name (-> by_param[(state_or_tran, *)])
attribute -- model attribute, e.g. 'power' or 'duration'
(-> by_param[(state_or_tran, *)][attribute])
param_index -- index of variable parameter
Returns the mean standard deviation of all measurements of 'attribute'
(e.g. power consumption or timeout) for state/transition 'state_or_tran' where
parameter 'param_index' is dynamic and all other parameters are fixed.
I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
this function returns the mean of the standard deviations of (a=1, b=*, c=1),
(a=1, b=*, c=2), and so on.
"""
partitions = []
for param_value in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
param_partition = []
for k, v in by_param.items():
if param_slice_eq(k, param_value, param_index):
param_partition.extend(v[attribute])
if len(param_partition) > 1:
partitions.append(param_partition)
elif len(param_partition) == 1:
vprint(verbose, '[W] parameter value partition for {} contains only one element -- skipping'.format(param_value))
else:
vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value))
if len(partitions) == 0:
vprint(verbose, '[W] Found no partitions for {}/{}/{} ???'.format(state_or_tran, attribute, param_index))
return 0.
return np.mean([np.std(partition) for partition in partitions])
def _corr_by_param(by_name, state_or_trans, attribute, param_index):
if _all_params_are_numeric(by_name[state_or_trans], param_index):
param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param']))))
try:
return np.corrcoef(by_name[state_or_trans][attribute], param_values)[0, 1]
except FloatingPointError:
# Typically happens when all parameter values are identical.
# Building a correlation coefficient is pointless in this case
# -> assume no correlation
return 0.
except ValueError:
print('[!] Exception in _corr_by_param(by_name, state_or_trans={}, attribute={}, param_index={})'.format(state_or_trans, attribute, param_index))
print('[!] while executing np.corrcoef(by_name[{}][{}]={}, {}))'.format(state_or_trans, attribute, by_name[state_or_trans][attribute], param_values))
raise
else:
return 0.
def _all_params_are_numeric(data, param_idx):
param_values = list(map(lambda x: x[param_idx], data['param']))
if len(list(filter(is_numeric, param_values))) == len(param_values):
return True
return False
class OptionalTimingAnalysis:
def __init__(self, enabled = True):
self.enabled = enabled
self.wrapped_lines = list()
self.index = 1
def get_header(self):
ret = ''
if self.enabled:
ret += '#define TIMEIT(index, functioncall) '
ret += 'counter.start(); '
ret += 'functioncall; '
ret += 'counter.stop();'
ret += 'kout << endl << index << " :: " << counter.value << "/" << counter.overflow << endl;\n'
return ret
def wrap_codeblock(self, codeblock):
if not self.enabled:
return codeblock
lines = codeblock.split('\n')
ret = list()
for line in lines:
if re.fullmatch('.+;', line):
ret.append('TIMEIT( {:d}, {} )'.format(self.index, line))
self.wrapped_lines.append(line)
self.index += 1
else:
ret.append(line)
return '\n'.join(ret)
|