summaryrefslogtreecommitdiff
path: root/lib/utils.py
blob: 91dded0db1513942d5fa5047507935e16c355fdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import numpy as np
import re

arg_support_enabled = True


def vprint(verbose, string):
    """
    Print `string` if `verbose`.

    Prints string if verbose is a True value
    """
    if verbose:
        print(string)


def running_mean(x: np.ndarray, N: int) -> np.ndarray:
    """
    Compute `N` elements wide running average over `x`.

    :param x: 1-Dimensional NumPy array
    :param N: how many items to average
    """
    # FIXME np.insert(x, 0, [x[0] for i in range(N/2)])
    # FIXME np.insert(x, -1, [x[-1] for i in range(N/2)])
    # (dabei ungerade N beachten)
    cumsum = np.cumsum(np.insert(x, 0, 0))
    return (cumsum[N:] - cumsum[:-N]) / N


def human_readable(value, unit):
    for prefix, factor in (
        ("p", 1e-12),
        ("n", 1e-9),
        (u"µ", 1e-6),
        ("m", 1e-3),
        ("", 1),
        ("k", 1e3),
    ):
        if value < 1e3 * factor:
            return "{:.2f} {}{}".format(value * (1 / factor), prefix, unit)
    return "{:.2f} {}".format(value, unit)


def is_numeric(n):
    """Check if `n` is numeric (i.e., it can be converted to float)."""
    if n is None:
        return False
    try:
        float(n)
        return True
    except ValueError:
        return False


def is_power_of_two(n):
    """Check if `n` is a power of two (1, 2, 4, 8, 16, ...)."""
    return n > 0 and (n & (n - 1)) == 0


def float_or_nan(n):
    """Convert `n` to float (if numeric) or NaN."""
    if n is None:
        return np.nan
    try:
        return float(n)
    except ValueError:
        return np.nan


def soft_cast_int(n):
    """
    Convert `n` to int (if numeric) or return it as-is.

    If `n` is empty, returns None.
    If `n` is not numeric, it is left unchanged.
    """
    if n is None or n == "":
        return None
    try:
        return int(n)
    except ValueError:
        return n


def soft_cast_float(n):
    """
    Convert `n` to float (if numeric) or return it as-is.

    If `n` is empty, returns None.
    If `n` is not numeric, it is left unchanged.
    """
    if n is None or n == "":
        return None
    try:
        return float(n)
    except ValueError:
        return n


def flatten(somelist):
    """
    Flatten a list.

    Example: flatten([[1, 2], [3], [4, 5]]) -> [1, 2, 3, 4, 5]
    """
    return [item for sublist in somelist for item in sublist]


def parse_conf_str(conf_str):
    """
    Parse a configuration string `k1=v1,k2=v2`... and return a dict `{'k1': v1, 'k2': v2}`...

    Values are casted to float if possible and kept as-is otherwise.
    """
    conf_dict = dict()
    for option in conf_str.split(","):
        key, value = option.split("=")
        conf_dict[key] = soft_cast_float(value)
    return conf_dict


def remove_index_from_tuple(parameters, index):
    """
    Remove the element at `index` from tuple `parameters`.

    :param parameters: tuple
    :param index: index of element which is to be removed
    :returns: parameters tuple without the element at index
    """
    return (*parameters[:index], *parameters[index + 1 :])


def param_slice_eq(a, b, index):
    """
    Check if by_param keys a and b are identical, ignoring the parameter at index.

    parameters:
    a, b -- (state/transition name, [parameter0 value, parameter1 value, ...])
    index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.)

    Returns True iff a and b have the same state/transition name, and all
    parameters at positions != index are identical.

    example:
    ('foo', [1, 4]), ('foo', [2, 4]), 0 -> True
    ('foo', [1, 4]), ('foo', [2, 4]), 1 -> False

    """
    if (*a[1][:index], *a[1][index + 1 :]) == (*b[1][:index], *b[1][index + 1 :]) and a[
        0
    ] == b[0]:
        return True
    return False


def match_parameter_values(input_param: dict, match_param: dict):
    """
    Check whether one of the paramaters in `input_param` has the same value in `match_param`.

    :param input_param: parameter dict of a state/transition/... measurement
    :param match_param: parameter value filter
    :returns: True if for all parameters k in match_param: input_param[k] == match_param[k], or if match_param is None.
    """
    if match_param is None:
        return True
    for k, v in match_param.items():
        if k in input_param and input_param[k] != v:
            return False
    return True


def by_name_to_by_param(by_name: dict):
    """
    Convert aggregation by name to aggregation by name and parameter values.
    """
    by_param = dict()
    for name in by_name.keys():
        for i, parameters in enumerate(by_name[name]["param"]):
            param_key = (name, tuple(parameters))
            if param_key not in by_param:
                by_param[param_key] = dict()
                for key in by_name[name].keys():
                    by_param[param_key][key] = list()
                by_param[param_key]["attributes"] = by_name[name]["attributes"]
                # special case for PTA models
                if "isa" in by_name[name]:
                    by_param[param_key]["isa"] = by_name[name]["isa"]
            for attribute in by_name[name]["attributes"]:
                by_param[param_key][attribute].append(by_name[name][attribute][i])
            # Required for match_parameter_valuse in _try_fits
            by_param[param_key]["param"].append(by_name[name]["param"][i])
    return by_param


def filter_aggregate_by_param(aggregate, parameters, parameter_filter):
    """
    Remove entries which do not have certain parameter values from `aggregate`.

    :param aggregate: aggregated measurement data, must be a dict conforming to
        aggregate[state or transition name]['param'] = (first parameter value, second parameter value, ...)
        and
        aggregate[state or transition name]['attributes'] = [list of keys with measurement data, e.g. 'power' or 'duration']
    :param parameters: list of parameters, used to map parameter index to parameter name. parameters=['foo', ...] means 'foo' is the first parameter
    :param parameter_filter: [[name, value], [name, value], ...] list of parameter values to keep, all others are removed. Values refer to normalizad parameter data.
    """
    for param_name_and_value in parameter_filter:
        param_index = parameters.index(param_name_and_value[0])
        param_value = soft_cast_int(param_name_and_value[1])
        names_to_remove = set()
        for name in aggregate.keys():
            indices_to_keep = list(
                map(lambda x: x[param_index] == param_value, aggregate[name]["param"])
            )
            aggregate[name]["param"] = list(
                map(
                    lambda iv: iv[1],
                    filter(
                        lambda iv: indices_to_keep[iv[0]],
                        enumerate(aggregate[name]["param"]),
                    ),
                )
            )
            if len(indices_to_keep) == 0:
                print("??? {}->{}".format(parameter_filter, name))
                names_to_remove.add(name)
            else:
                for attribute in aggregate[name]["attributes"]:
                    aggregate[name][attribute] = aggregate[name][attribute][
                        indices_to_keep
                    ]
                    if len(aggregate[name][attribute]) == 0:
                        names_to_remove.add(name)
        for name in names_to_remove:
            aggregate.pop(name)


class OptionalTimingAnalysis:
    def __init__(self, enabled=True):
        self.enabled = enabled
        self.wrapped_lines = list()
        self.index = 1

    def get_header(self):
        ret = ""
        if self.enabled:
            ret += "#define TIMEIT(index, functioncall) "
            ret += "counter.start(); "
            ret += "functioncall; "
            ret += "counter.stop();"
            ret += 'kout << endl << index << " :: " << counter.value << "/" << counter.overflow << endl;\n'
        return ret

    def wrap_codeblock(self, codeblock):
        if not self.enabled:
            return codeblock
        lines = codeblock.split("\n")
        ret = list()
        for line in lines:
            if re.fullmatch(".+;", line):
                ret.append("TIMEIT( {:d}, {} )".format(self.index, line))
                self.wrapped_lines.append(line)
                self.index += 1
            else:
                ret.append(line)
        return "\n".join(ret)