1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
import itertools
import numpy as np
import re
arg_support_enabled = True
def vprint(verbose, string):
"""
Print `string` if `verbose`.
Prints string if verbose is a True value
"""
if verbose:
print(string)
def is_numeric(n):
"""Check if `n` is numeric (i.e., it can be converted to float)."""
if n == None:
return False
try:
float(n)
return True
except ValueError:
return False
def float_or_nan(n):
"""Convert `n` to float (if numeric) or NaN."""
if n == None:
return np.nan
try:
return float(n)
except ValueError:
return np.nan
def soft_cast_int(n):
"""
Convert `n` to int, if possible.
If `n` is empty, returns None.
If `n` is not numeric, it is left unchanged.
"""
if n == None or n == '':
return None
try:
return int(n)
except ValueError:
return n
def soft_cast_float(n):
"""
Convert `n` to float, if possible.
If `n` is empty, returns None.
If `n` is not numeric, it is left unchanged.
"""
if n == None or n == '':
return None
try:
return float(n)
except ValueError:
return n
def flatten(somelist):
"""
Flatten a list.
Example: flatten([[1, 2], [3], [4, 5]]) -> [1, 2, 3, 4, 5]
"""
return [item for sublist in somelist for item in sublist]
def parse_conf_str(conf_str):
"""
Parse a configuration string `k1=v1,k2=v2`... and return a dict `{'k1': v1, 'k2': v2}`...
Values are casted to float if possible and kept as-is otherwise.
"""
conf_dict = dict()
for option in conf_str.split(','):
key, value = option.split('=')
conf_dict[key] = soft_cast_float(value)
return conf_dict
def remove_index_from_tuple(parameters, index):
"""
Remove the element at `index` from tuple `parameters`.
:param parameters: tuple
:param index: index of element which is to be removed
:returns: parameters tuple without the element at index
"""
return (*parameters[:index], *parameters[index+1:])
def param_slice_eq(a, b, index):
"""
Check if by_param keys a and b are identical, ignoring the parameter at index.
parameters:
a, b -- (state/transition name, [parameter0 value, parameter1 value, ...])
index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.)
Returns True iff a and b have the same state/transition name, and all
parameters at positions != index are identical.
example:
('foo', [1, 4]), ('foo', [2, 4]), 0 -> True
('foo', [1, 4]), ('foo', [2, 4]), 1 -> False
"""
if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]:
return True
return False
def prune_dependent_parameters(by_name, parameter_names, correlation_threshold = 0.5):
"""
Remove dependent parameters from aggregate.
:param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place.
by_name[name][attribute] must be a list or 1-D numpy array.
by_name[stanamete_or_trans]['param'] must be a list of parameter values.
Other dict members are left as-is
:param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place.
:param correlation_threshold: Remove parameter if absolute correlation exceeds this threshold (default: 0.5)
Model generation (and its components, such as relevant parameter detection and least squares optimization) only works if input variables (i.e., parameters)
are independent of each other. This function computes the correlation coefficient for each pair of parameters and removes those which depend on each other.
For each pair of dependent parameters, the lexically greater one is removed (e.g. "a" and "b" -> "b" is removed).
"""
parameter_indices_to_remove = list()
for parameter_combination in itertools.product(range(len(parameter_names)), range(len(parameter_names))):
index_1, index_2 = parameter_combination
if index_1 >= index_2:
continue
parameter_values = [list(), list()] # both parameters have a value
parameter_values_1 = list() # parameter 1 has a value
parameter_values_2 = list() # parameter 2 has a value
for name in by_name:
for measurement in by_name[name]['param']:
value_1 = measurement[index_1]
value_2 = measurement[index_2]
if is_numeric(value_1):
parameter_values_1.append(value_1)
if is_numeric(value_2):
parameter_values_2.append(value_2)
if is_numeric(value_1) and is_numeric(value_2):
parameter_values[0].append(value_1)
parameter_values[1].append(value_2)
if len(parameter_values[0]):
# Calculating the correlation coefficient only makes sense when neither value is constant
if np.std(parameter_values_1) != 0 and np.std(parameter_values_2) != 0:
correlation = np.corrcoef(parameter_values)[0][1]
if correlation != np.nan and np.abs(correlation) > correlation_threshold:
print('[!] Parameters {} <-> {} are correlated with coefficcient {}'.format(parameter_names[index_1], parameter_names[index_2], correlation))
if len(parameter_values_1) < len(parameter_values_2):
index_to_remove = index_1
else:
index_to_remove = index_2
print(' Removing parameter {}'.format(parameter_names[index_to_remove]))
parameter_indices_to_remove.append(index_to_remove)
remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove)
def remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove):
"""
Remove parameters listed in `parameter_indices` from aggregate `by_name` and `parameter_names`.
:param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place.
by_name[name][attribute] must be a list or 1-D numpy array.
by_name[stanamete_or_trans]['param'] must be a list of parameter values.
Other dict members are left as-is
:param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place.
:param parameter_indices_to_remove: List of parameter indices to be removed
"""
# Start removal from the end of the list to avoid renumbering of list elemenets
for parameter_index in sorted(parameter_indices_to_remove, reverse = True):
for name in by_name:
for measurement in by_name[name]['param']:
measurement.pop(parameter_index)
parameter_names.pop(parameter_index)
def compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_trans, attribute, verbose = False):
"""
Compute standard deviation and correlation coefficient for various data partitions.
It is strongly recommended to vary all parameter values evenly across partitions.
For instance, given two parameters, providing only the combinations
(1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results.
It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values)
:param by_name: ground truth partitioned by state/transition name.
by_name[state_or_trans][attribute] must be a list or 1-D numpy array.
by_name[state_or_trans]['param'] must be a list of parameter values
corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the
first ground truth element has the (lexically) first parameter set to 1,
the second to 2 and the third to 3.
:param by_param: ground truth partitioned by state/transition name and parameters.
by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array.
:param parameter_names: list of parameter names, must have the same order as the parameter
values in by_param (lexical sorting is recommended).
:param arg_count: dict providing the number of functions args ("local parameters") for each function.
:param state_or_trans: state or transition name, e.g. 'send' or 'TX'
:param attribute: model attribute, e.g. 'power' or 'duration'
:param verbose: print warning if some parameter partitions are too small for fitting
:returns: a dict with the following content:
std_static -- static parameter-unaware model error: stddev of by_name[state_or_trans][attribute]
std_param_lut -- static parameter-aware model error: mean stddev of by_param[(state_or_trans, *)][attribute]
std_by_param -- static parameter-aware model error ignoring a single parameter.
dictionary with one key per parameter. The value is the mean stddev
of measurements where all other parameters are fixed and the parameter
in question is variable. E.g. std_by_param['X'] is the mean stddev of
by_param[(state_or_trans, (X=*, Y=..., Z=...))][attribute].
std_by_arg -- same, but ignoring a single function argument
Only set if state_or_trans appears in arg_count, empty dict otherwise.
corr_by_param -- correlation coefficient
corr_by_arg -- same, but ignoring a single function argument
Only set if state_or_trans appears in arg_count, empty dict otherwise.
"""
ret = {
'std_static' : np.std(by_name[state_or_trans][attribute]),
'std_param_lut' : np.mean([np.std(by_param[x][attribute]) for x in by_param.keys() if x[0] == state_or_trans]),
'std_by_param' : {},
'std_by_arg' : [],
'corr_by_param' : {},
'corr_by_arg' : [],
}
np.seterr('raise')
for param_idx, param in enumerate(parameter_names):
ret['std_by_param'][param] = _mean_std_by_param(by_param, state_or_trans, attribute, param_idx, verbose)
ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx)
if arg_support_enabled and state_or_trans in arg_count:
for arg_index in range(arg_count[state_or_trans]):
ret['std_by_arg'].append(_mean_std_by_param(by_param, state_or_trans, attribute, len(parameter_names) + arg_index, verbose))
ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, attribute, len(parameter_names) + arg_index))
return ret
def _param_values(by_param, state_or_tran):
"""
Return the distinct values of each parameter in by_param.
E.g. if by_param.keys() contains the distinct parameter values (1, 1), (1, 2), (1, 3), (0, 3),
this function returns [[1, 0], [1, 2, 3]].
Note that the order is not deterministic at the moment.
"""
param_tuples = list(map(lambda x: x[1], filter(lambda x: x[0] == state_or_tran, by_param.keys())))
distinct_values = [set() for i in range(len(param_tuples[0]))]
for param_tuple in param_tuples:
for i in range(len(param_tuple)):
distinct_values[i].add(param_tuple[i])
# TODO returned values must have a deterministic order
# Convert sets to lists
distinct_values = list(map(list, distinct_values))
return distinct_values
def _mean_std_by_param(by_param, state_or_tran, attribute, param_index, verbose = False):
u"""
Calculate the mean standard deviation for a static model where all parameters but param_index are constant.
arguments:
by_param -- measurements sorted by key/transition name and parameter values
state_or_tran -- state or transition name (-> by_param[(state_or_tran, *)])
attribute -- model attribute, e.g. 'power' or 'duration'
(-> by_param[(state_or_tran, *)][attribute])
param_index -- index of variable parameter
Returns the mean standard deviation of all measurements of 'attribute'
(e.g. power consumption or timeout) for state/transition 'state_or_tran' where
parameter 'param_index' is dynamic and all other parameters are fixed.
I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
this function returns the mean of the standard deviations of (a=1, b=*, c=1),
(a=1, b=*, c=2), and so on.
Also returns an (n-1)-dimensional array (where n is the number of parameters)
giving the standard deviation of each individual partition. E.g. for
param_index == 2 and 4 parameters, array[a][b][d] is the
stddev of measurements with param0 == a, param1 == b, param2 variable,
and param3 == d.
"""
partitions = []
# TODO precalculate or cache info_shape (it only depends on state_or_tran)
param_values = list(remove_index_from_tuple(_param_values(by_param, state_or_tran), param_index))
info_shape = tuple(map(len, param_values))
stddev_matrix = np.full(info_shape, np.nan)
for param_value in itertools.product(*param_values):
param_partition = list()
for k, v in by_param.items():
if k[0] == state_or_tran and (*k[1][:param_index], *k[1][param_index+1:]) == param_value:
param_partition.extend(v[attribute])
if len(param_partition) > 1:
matrix_index = list(range(len(param_value)))
for i in range(len(param_value)):
matrix_index[i] = param_values[i].index(param_value[i])
matrix_index = tuple(matrix_index)
stddev_matrix[matrix_index] = np.std(param_partition)
for param_value in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
param_partition = []
for k, v in by_param.items():
if param_slice_eq(k, param_value, param_index):
param_partition.extend(v[attribute])
if len(param_partition) > 1:
partitions.append(param_partition)
elif len(param_partition) == 1:
vprint(verbose, '[W] parameter value partition for {} contains only one element -- skipping'.format(param_value))
else:
vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value))
if len(partitions) == 0:
vprint(verbose, '[W] Found no partitions for {}/{}/{} ???'.format(state_or_tran, attribute, param_index))
return 0.
return np.mean([np.std(partition) for partition in partitions])
def _corr_by_param(by_name, state_or_trans, attribute, param_index):
if _all_params_are_numeric(by_name[state_or_trans], param_index):
param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param']))))
try:
return np.corrcoef(by_name[state_or_trans][attribute], param_values)[0, 1]
except FloatingPointError:
# Typically happens when all parameter values are identical.
# Building a correlation coefficient is pointless in this case
# -> assume no correlation
return 0.
except ValueError:
print('[!] Exception in _corr_by_param(by_name, state_or_trans={}, attribute={}, param_index={})'.format(state_or_trans, attribute, param_index))
print('[!] while executing np.corrcoef(by_name[{}][{}]={}, {}))'.format(state_or_trans, attribute, by_name[state_or_trans][attribute], param_values))
raise
else:
return 0.
def _all_params_are_numeric(data, param_idx):
"""Check if all `data['param'][*][param_idx]` elements are numeric, as reported by `utils.is_numeric`."""
param_values = list(map(lambda x: x[param_idx], data['param']))
if len(list(filter(is_numeric, param_values))) == len(param_values):
return True
return False
class OptionalTimingAnalysis:
def __init__(self, enabled = True):
self.enabled = enabled
self.wrapped_lines = list()
self.index = 1
def get_header(self):
ret = ''
if self.enabled:
ret += '#define TIMEIT(index, functioncall) '
ret += 'counter.start(); '
ret += 'functioncall; '
ret += 'counter.stop();'
ret += 'kout << endl << index << " :: " << counter.value << "/" << counter.overflow << endl;\n'
return ret
def wrap_codeblock(self, codeblock):
if not self.enabled:
return codeblock
lines = codeblock.split('\n')
ret = list()
for line in lines:
if re.fullmatch('.+;', line):
ret.append('TIMEIT( {:d}, {} )'.format(self.index, line))
self.wrapped_lines.append(line)
self.index += 1
else:
ret.append(line)
return '\n'.join(ret)
|