summaryrefslogtreecommitdiff
path: root/test/test_ptamodel.py
blob: 94ee842894997604b72b39012575b0769c17b62d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#!/usr/bin/env python3

from dfatool.loader import RawData, pta_trace_to_aggregate
from dfatool.model import PTAModel
import os
import unittest
import pytest


class TestModels(unittest.TestCase):
    def test_model_singlefile_rf24(self):
        raw_data = RawData(["test-data/20170220_164723_RF24_int_A.tar"])
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = PTAModel(by_name, parameters, arg_count)
        self.assertEqual(model.states(), "POWERDOWN RX STANDBY1 TX".split(" "))
        self.assertEqual(
            model.transitions(),
            "begin epilogue powerDown powerUp setDataRate_num setPALevel_num startListening stopListening write_nb".split(
                " "
            ),
        )
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("POWERDOWN", "power"), 0, places=0)
        self.assertAlmostEqual(static_model("RX", "power"), 52254, places=0)
        self.assertAlmostEqual(static_model("STANDBY1", "power"), 7, places=0)
        self.assertAlmostEqual(static_model("TX", "power"), 18414, places=0)
        self.assertAlmostEqual(static_model("begin", "energy"), 1652249, places=0)
        self.assertAlmostEqual(static_model("epilogue", "energy"), 15449, places=0)
        self.assertAlmostEqual(static_model("powerDown", "energy"), 4547, places=0)
        self.assertAlmostEqual(static_model("powerUp", "energy"), 1641765, places=0)
        self.assertAlmostEqual(
            static_model("setDataRate_num", "energy"), 7749, places=0
        )
        self.assertAlmostEqual(static_model("setPALevel_num", "energy"), 4700, places=0)
        self.assertAlmostEqual(
            static_model("startListening", "energy"), 4309602, places=0
        )
        self.assertAlmostEqual(
            static_model("stopListening", "energy"), 193775, places=0
        )
        self.assertAlmostEqual(static_model("write_nb", "energy"), 218339, places=0)
        self.assertAlmostEqual(
            static_model("begin", "rel_energy_prev"), 1649571, places=0
        )
        self.assertAlmostEqual(
            static_model("epilogue", "rel_energy_prev"), -744114, places=0
        )
        self.assertAlmostEqual(
            static_model("powerDown", "rel_energy_prev"), 3854, places=0
        )
        self.assertAlmostEqual(
            static_model("powerUp", "rel_energy_prev"), 1641381, places=0
        )
        self.assertAlmostEqual(
            static_model("setDataRate_num", "rel_energy_prev"), 6777, places=0
        )
        self.assertAlmostEqual(
            static_model("setPALevel_num", "rel_energy_prev"), 3728, places=0
        )
        self.assertAlmostEqual(
            static_model("startListening", "rel_energy_prev"), 4307769, places=0
        )
        self.assertAlmostEqual(
            static_model("stopListening", "rel_energy_prev"), -13533693, places=0
        )
        self.assertAlmostEqual(
            static_model("write_nb", "rel_energy_prev"), 214618, places=0
        )
        self.assertAlmostEqual(static_model("begin", "duration"), 19830, places=0)
        self.assertAlmostEqual(static_model("epilogue", "duration"), 40, places=0)
        self.assertAlmostEqual(static_model("powerDown", "duration"), 90, places=0)
        self.assertAlmostEqual(static_model("powerUp", "duration"), 10030, places=0)
        self.assertAlmostEqual(
            static_model("setDataRate_num", "duration"), 140, places=0
        )
        self.assertAlmostEqual(static_model("setPALevel_num", "duration"), 90, places=0)
        self.assertAlmostEqual(
            static_model("startListening", "duration"), 260, places=0
        )
        self.assertAlmostEqual(static_model("stopListening", "duration"), 260, places=0)
        self.assertAlmostEqual(static_model("write_nb", "duration"), 510, places=0)

        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("POWERDOWN", "power", "datarate"),
            0,
            places=2,
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("POWERDOWN", "power", "txbytes"),
            0,
            places=2,
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("POWERDOWN", "power", "txpower"),
            0,
            places=2,
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("RX", "power", "datarate"),
            0.99,
            places=2,
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("RX", "power", "txbytes"), 0, places=2
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("RX", "power", "txpower"), 0.01, places=2
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("STANDBY1", "power", "datarate"),
            0.04,
            places=2,
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("STANDBY1", "power", "txbytes"),
            0.35,
            places=2,
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("STANDBY1", "power", "txpower"),
            0.32,
            places=2,
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("TX", "power", "datarate"), 1, places=2
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("TX", "power", "txbytes"), 0.09, places=2
        )
        self.assertAlmostEqual(
            model.stats.param_dependence_ratio("TX", "power", "txpower"), 1, places=2
        )

        param_model, param_info = model.get_fitted()
        self.assertEqual(param_info("POWERDOWN", "power"), None)
        self.assertEqual(
            param_info("RX", "power")["function"].model_function,
            "0 + regression_arg(0) + regression_arg(1) * np.sqrt(parameter(datarate))",
        )
        self.assertAlmostEqual(
            param_info("RX", "power")["function"].model_args[0], 48530.7, places=0
        )
        self.assertAlmostEqual(
            param_info("RX", "power")["function"].model_args[1], 117, places=0
        )
        self.assertEqual(param_info("STANDBY1", "power"), None)
        self.assertEqual(
            param_info("TX", "power")["function"].model_function,
            "0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) + regression_arg(2) * parameter(txpower) + regression_arg(3) * 1/(parameter(datarate)) * parameter(txpower)",
        )
        self.assertEqual(
            param_info("epilogue", "timeout")["function"].model_function,
            "0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate))",
        )
        self.assertEqual(
            param_info("stopListening", "duration")["function"].model_function,
            "0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate))",
        )

        self.assertAlmostEqual(
            param_model("RX", "power", param=[1, None, None]), 48647, places=-1
        )

    def test_model_singlefile_mmparam(self):
        raw_data = RawData(["test-data/20161221_123347_mmparam.tar"])
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = PTAModel(by_name, parameters, arg_count)
        self.assertEqual(model.states(), "OFF ON".split(" "))
        self.assertEqual(model.transitions(), "off setBrightness".split(" "))
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("OFF", "power"), 7124, places=0)
        self.assertAlmostEqual(static_model("ON", "power"), 17866, places=0)
        self.assertAlmostEqual(static_model("off", "energy"), 268079197, places=0)
        self.assertAlmostEqual(
            static_model("setBrightness", "energy"), 168912773, places=0
        )
        self.assertAlmostEqual(
            static_model("off", "rel_energy_prev"), 105040198, places=0
        )
        self.assertAlmostEqual(
            static_model("setBrightness", "rel_energy_prev"), 103745586, places=0
        )
        self.assertAlmostEqual(static_model("off", "duration"), 9130, places=0)
        self.assertAlmostEqual(
            static_model("setBrightness", "duration"), 9130, places=0
        )

        param_lut_model = model.get_param_lut()
        self.assertAlmostEqual(
            param_lut_model("OFF", "power", param=[None, None]), 7124, places=0
        )
        with self.assertRaises(KeyError):
            param_lut_model("ON", "power", param=[None, None])
            param_lut_model("ON", "power", param=["a"])
            param_lut_model("ON", "power", param=[0])
        self.assertTrue(param_lut_model("ON", "power", param=[0, 0]))
        param_lut_model = model.get_param_lut(fallback=True)
        self.assertAlmostEqual(
            param_lut_model("ON", "power", param=[None, None]), 17866, places=0
        )

    def test_model_multifile_lm75x(self):
        testfiles = [
            "test-data/20170116_124500_LM75x.tar",
            "test-data/20170116_131306_LM75x.tar",
        ]
        raw_data = RawData(testfiles)
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = PTAModel(by_name, parameters, arg_count)
        self.assertEqual(model.states(), "ACTIVE POWEROFF".split(" "))
        self.assertEqual(
            model.transitions(), "getTemp setHyst setOS shutdown start".split(" ")
        )
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("ACTIVE", "power"), 332, places=0)
        self.assertAlmostEqual(static_model("POWEROFF", "power"), 7, places=0)
        self.assertAlmostEqual(static_model("getTemp", "energy"), 26016748, places=0)
        self.assertAlmostEqual(static_model("setHyst", "energy"), 22082226, places=0)
        self.assertAlmostEqual(static_model("setOS", "energy"), 21774238, places=0)
        self.assertAlmostEqual(static_model("shutdown", "energy"), 11808160, places=0)
        self.assertAlmostEqual(static_model("start", "energy"), 12445302, places=0)
        self.assertAlmostEqual(
            static_model("getTemp", "rel_energy_prev"), 21722720, places=0
        )
        self.assertAlmostEqual(
            static_model("setHyst", "rel_energy_prev"), 19001499, places=0
        )
        self.assertAlmostEqual(
            static_model("setOS", "rel_energy_prev"), 18693283, places=0
        )
        self.assertAlmostEqual(
            static_model("shutdown", "rel_energy_prev"), 11746224, places=0
        )
        self.assertAlmostEqual(
            static_model("start", "rel_energy_prev"), 12391462, places=0
        )
        self.assertAlmostEqual(static_model("getTemp", "duration"), 12740, places=0)
        self.assertAlmostEqual(static_model("setHyst", "duration"), 9140, places=0)
        self.assertAlmostEqual(static_model("setOS", "duration"), 9140, places=0)
        self.assertAlmostEqual(static_model("shutdown", "duration"), 6980, places=0)
        self.assertAlmostEqual(static_model("start", "duration"), 6980, places=0)

    def test_model_multifile_sharp(self):
        testfiles = [
            "test-data/20170116_145420_sharpLS013B4DN.tar",
            "test-data/20170116_151348_sharpLS013B4DN.tar",
        ]
        raw_data = RawData(testfiles)
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = PTAModel(by_name, parameters, arg_count)
        self.assertEqual(model.states(), "DISABLED ENABLED".split(" "))
        self.assertEqual(
            model.transitions(),
            "clear disable enable ioInit sendLine toggleVCOM".split(" "),
        )
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("DISABLED", "power"), 22, places=0)
        self.assertAlmostEqual(static_model("ENABLED", "power"), 24, places=0)
        self.assertAlmostEqual(static_model("clear", "energy"), 14059, places=0)
        self.assertAlmostEqual(static_model("disable", "energy"), 0, places=0)
        self.assertAlmostEqual(static_model("enable", "energy"), 0, places=0)
        self.assertAlmostEqual(static_model("ioInit", "energy"), 0, places=0)
        self.assertAlmostEqual(static_model("sendLine", "energy"), 37874, places=0)
        self.assertAlmostEqual(static_model("toggleVCOM", "energy"), 30991, places=0)
        self.assertAlmostEqual(
            static_model("clear", "rel_energy_prev"), 13329, places=0
        )
        self.assertAlmostEqual(static_model("disable", "rel_energy_prev"), 0, places=0)
        self.assertAlmostEqual(static_model("enable", "rel_energy_prev"), 0, places=0)
        self.assertAlmostEqual(static_model("ioInit", "rel_energy_prev"), 0, places=0)
        self.assertAlmostEqual(
            static_model("sendLine", "rel_energy_prev"), 33447, places=0
        )
        self.assertAlmostEqual(
            static_model("toggleVCOM", "rel_energy_prev"), 30242, places=0
        )
        self.assertAlmostEqual(static_model("clear", "duration"), 30, places=0)
        self.assertAlmostEqual(static_model("disable", "duration"), 0, places=0)
        self.assertAlmostEqual(static_model("enable", "duration"), 0, places=0)
        self.assertAlmostEqual(static_model("ioInit", "duration"), 0, places=0)
        self.assertAlmostEqual(static_model("sendLine", "duration"), 180, places=0)
        self.assertAlmostEqual(static_model("toggleVCOM", "duration"), 30, places=0)

    def test_model_multifile_mmstatic(self):
        testfiles = [
            "test-data/20170116_143516_mmstatic.tar",
            "test-data/20170116_142654_mmstatic.tar",
        ]
        raw_data = RawData(testfiles)
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = PTAModel(by_name, parameters, arg_count)
        self.assertEqual(model.states(), "B G OFF R".split(" "))
        self.assertEqual(model.transitions(), "blue green off red".split(" "))
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("B", "power"), 29443, places=0)
        self.assertAlmostEqual(static_model("G", "power"), 29432, places=0)
        self.assertAlmostEqual(static_model("OFF", "power"), 7057, places=0)
        self.assertAlmostEqual(static_model("R", "power"), 49068, places=0)
        self.assertAlmostEqual(static_model("blue", "energy"), 374440955, places=0)
        self.assertAlmostEqual(static_model("green", "energy"), 372026027, places=0)
        self.assertAlmostEqual(static_model("off", "energy"), 372999554, places=0)
        self.assertAlmostEqual(static_model("red", "energy"), 378936634, places=0)
        self.assertAlmostEqual(
            static_model("blue", "rel_energy_prev"), 105535587, places=0
        )
        self.assertAlmostEqual(
            static_model("green", "rel_energy_prev"), 102999371, places=0
        )
        self.assertAlmostEqual(
            static_model("off", "rel_energy_prev"), 103613698, places=0
        )
        self.assertAlmostEqual(
            static_model("red", "rel_energy_prev"), 110474331, places=0
        )
        self.assertAlmostEqual(static_model("blue", "duration"), 9140, places=0)
        self.assertAlmostEqual(static_model("green", "duration"), 9140, places=0)
        self.assertAlmostEqual(static_model("off", "duration"), 9140, places=0)
        self.assertAlmostEqual(static_model("red", "duration"), 9140, places=0)

    @pytest.mark.skipif(
        "TEST_SLOW" not in os.environ, reason="slow test, set TEST_SLOW=1 to run"
    )
    def test_model_multifile_cc1200(self):
        testfiles = [
            "test-data/20170125_125433_cc1200.tar",
            "test-data/20170125_142420_cc1200.tar",
            "test-data/20170125_144957_cc1200.tar",
            "test-data/20170125_151149_cc1200.tar",
            "test-data/20170125_151824_cc1200.tar",
            "test-data/20170125_154019_cc1200.tar",
        ]
        raw_data = RawData(testfiles)
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = PTAModel(by_name, parameters, arg_count)
        self.assertEqual(
            model.states(), "IDLE RX SLEEP SLEEP_EWOR SYNTH_ON TX XOFF".split(" ")
        )
        self.assertEqual(
            model.transitions(),
            "crystal_off eWOR idle init prepare_xmit receive send setSymbolRate setTxPower sleep txDone".split(
                " "
            ),
        )
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("IDLE", "power"), 9500, places=0)
        self.assertAlmostEqual(static_model("RX", "power"), 85177, places=0)
        self.assertAlmostEqual(static_model("SLEEP", "power"), 143, places=0)
        self.assertAlmostEqual(static_model("SLEEP_EWOR", "power"), 81801, places=0)
        self.assertAlmostEqual(static_model("SYNTH_ON", "power"), 60036, places=0)
        self.assertAlmostEqual(static_model("TX", "power"), 92461, places=0)
        self.assertAlmostEqual(static_model("XOFF", "power"), 780, places=0)
        self.assertAlmostEqual(static_model("crystal_off", "energy"), 114658, places=0)
        self.assertAlmostEqual(static_model("eWOR", "energy"), 317556, places=0)
        self.assertAlmostEqual(static_model("idle", "energy"), 717713, places=0)
        self.assertAlmostEqual(static_model("init", "energy"), 23028941, places=0)
        self.assertAlmostEqual(static_model("prepare_xmit", "energy"), 378552, places=0)
        self.assertAlmostEqual(static_model("receive", "energy"), 380335, places=0)
        self.assertAlmostEqual(static_model("send", "energy"), 4282597, places=0)
        self.assertAlmostEqual(
            static_model("setSymbolRate", "energy"), 962060, places=0
        )
        self.assertAlmostEqual(static_model("setTxPower", "energy"), 288701, places=0)
        self.assertAlmostEqual(static_model("sleep", "energy"), 104445, places=0)
        self.assertEqual(static_model("txDone", "energy"), 0)

        param_model, param_info = model.get_fitted()
        self.assertEqual(param_info("IDLE", "power"), None)
        self.assertEqual(
            param_info("RX", "power")["function"].model_function,
            "0 + regression_arg(0) + regression_arg(1) * np.log(parameter(symbolrate) + 1)",
        )
        self.assertEqual(param_info("SLEEP", "power"), None)
        self.assertEqual(param_info("SLEEP_EWOR", "power"), None)
        self.assertEqual(param_info("SYNTH_ON", "power"), None)
        self.assertEqual(param_info("XOFF", "power"), None)

        self.assertAlmostEqual(
            param_info("RX", "power")["function"].model_args[0], 84415, places=0
        )
        self.assertAlmostEqual(
            param_info("RX", "power")["function"].model_args[1], 206, places=0
        )


if __name__ == "__main__":
    unittest.main()