diff options
Diffstat (limited to 'src/driver')
| -rw-r--r-- | src/driver/bme680.cc | 714 | 
1 files changed, 243 insertions, 471 deletions
| diff --git a/src/driver/bme680.cc b/src/driver/bme680.cc index 9469c8f..52f94bf 100644 --- a/src/driver/bme680.cc +++ b/src/driver/bme680.cc @@ -49,256 +49,27 @@   @brief Sensor driver for BME680 sensor */
  #include "driver/bme680.h"
 -/*!
 - * @brief This internal API is used to read the calibrated data from the sensor.
 - *
 - * This function is used to retrieve the calibration
 - * data from the image registers of the sensor.
 - *
 - * @note Registers 89h  to A1h for calibration data 1 to 24
 - *        from bit 0 to 7
 - * @note Registers E1h to F0h for calibration data 25 to 40
 - *        from bit 0 to 7
 - * @param[in] dev	:Structure instance of bme680_dev.
 - *
 - * @return Result of API execution status.
 - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error
 - */
 -static int8_t get_calib_data(struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to set the gas configuration of the sensor.
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - *
 - * @return Result of API execution status.
 - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error
 - */
 -static int8_t set_gas_config(struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to get the gas configuration of the sensor.
 - * @note heatr_temp and heatr_dur values are currently register data
 - * and not the actual values set
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - *
 - * @return Result of API execution status.
 - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error
 - */
 -static int8_t get_gas_config(struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the Heat duration value.
 - *
 - * @param[in] dur	:Value of the duration to be shared.
 - *
 - * @return uint8_t threshold duration after calculation.
 - */
 -static uint8_t calc_heater_dur(uint16_t dur);
 -
 -#ifndef BME680_FLOAT_POINT_COMPENSATION
 -
 -/*!
 - * @brief This internal API is used to calculate the temperature value.
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - * @param[in] temp_adc	:Contains the temperature ADC value .
 - *
 - * @return uint32_t calculated temperature.
 - */
 -static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the pressure value.
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - * @param[in] pres_adc	:Contains the pressure ADC value .
 - *
 - * @return uint32_t calculated pressure.
 - */
 -static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the humidity value.
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - * @param[in] hum_adc	:Contains the humidity ADC value.
 - *
 - * @return uint32_t calculated humidity.
 - */
 -static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the Gas Resistance value.
 - *
 - * @param[in] dev		:Structure instance of bme680_dev.
 - * @param[in] gas_res_adc	:Contains the Gas Resistance ADC value.
 - * @param[in] gas_range		:Contains the range of gas values.
 - *
 - * @return uint32_t calculated gas resistance.
 - */
 -static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the Heat Resistance value.
 - *
 - * @param[in] dev	: Structure instance of bme680_dev
 - * @param[in] temp	: Contains the target temperature value.
 - *
 - * @return uint8_t calculated heater resistance.
 - */
 -static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev);
 -
 -#else
 -/*!
 - * @brief This internal API is used to calculate the
 - * temperature value value in float format
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - * @param[in] temp_adc	:Contains the temperature ADC value .
 - *
 - * @return Calculated temperature in float
 - */
 -static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the
 - * pressure value value in float format
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - * @param[in] pres_adc	:Contains the pressure ADC value .
 - *
 - * @return Calculated pressure in float.
 - */
 -static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the
 - * humidity value value in float format
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - * @param[in] hum_adc	:Contains the humidity ADC value.
 - *
 - * @return Calculated humidity in float.
 - */
 -static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the
 - * gas resistance value value in float format
 - *
 - * @param[in] dev		:Structure instance of bme680_dev.
 - * @param[in] gas_res_adc	:Contains the Gas Resistance ADC value.
 - * @param[in] gas_range		:Contains the range of gas values.
 - *
 - * @return Calculated gas resistance in float.
 - */
 -static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to calculate the
 - * heater resistance value in float format
 - *
 - * @param[in] temp	: Contains the target temperature value.
 - * @param[in] dev	: Structure instance of bme680_dev.
 - *
 - * @return Calculated heater resistance in float.
 - */
 -static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev);
 -
 -#endif
 -
 -/*!
 - * @brief This internal API is used to calculate the field data of sensor.
 - *
 - * @param[out] data :Structure instance to hold the data
 - * @param[in] dev	:Structure instance of bme680_dev.
 - *
 - *  @return int8_t result of the field data from sensor.
 - */
 -static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to set the memory page
 - * based on register address.
 - *
 - * The value of memory page
 - *  value  | Description
 - * --------|--------------
 - *   0     | BME680_PAGE0_SPI
 - *   1     | BME680_PAGE1_SPI
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - * @param[in] reg_addr	:Contains the register address array.
 - *
 - * @return Result of API execution status
 - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error
 - */
 -static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to get the memory page based
 - * on register address.
 - *
 - * The value of memory page
 - *  value  | Description
 - * --------|--------------
 - *   0     | BME680_PAGE0_SPI
 - *   1     | BME680_PAGE1_SPI
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - *
 - * @return Result of API execution status
 - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error
 - */
 -static int8_t get_mem_page(struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to validate the device pointer for
 - * null conditions.
 - *
 - * @param[in] dev	:Structure instance of bme680_dev.
 - *
 - * @return Result of API execution status
 - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error
 - */
 -static int8_t null_ptr_check(const struct bme680_dev *dev);
 -
 -/*!
 - * @brief This internal API is used to check the boundary
 - * conditions.
 - *
 - * @param[in] value	:pointer to the value.
 - * @param[in] min	:minimum value.
 - * @param[in] max	:maximum value.
 - * @param[in] dev	:Structure instance of bme680_dev.
 - *
 - * @return Result of API execution status
 - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error
 - */
 -static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev);
  /****************** Global Function Definitions *******************************/
  /*!
   *@brief This API is the entry point.
   *It reads the chip-id and calibration data from the sensor.
   */
 -int8_t bme680_init(struct bme680_dev *dev)
 +int8_t BME680::init()
  {
  	int8_t rslt;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
  		/* Soft reset to restore it to default values*/
 -		rslt = bme680_soft_reset(dev);
 +		rslt = softReset();
  		if (rslt == BME680_OK) {
 -			rslt = bme680_get_regs(BME680_CHIP_ID_ADDR, &dev->chip_id, 1, dev);
 +			rslt = getRegs(BME680_CHIP_ID_ADDR, &chip_id, 1);
  			if (rslt == BME680_OK) {
 -				if (dev->chip_id == BME680_CHIP_ID) {
 +				if (chip_id == BME680_CHIP_ID) {
  					/* Get the Calibration data */
 -					rslt = get_calib_data(dev);
 +					rslt = getCalibData();
  				} else {
  					rslt = BME680_E_DEV_NOT_FOUND;
  				}
 @@ -312,21 +83,21 @@ int8_t bme680_init(struct bme680_dev *dev)  /*!
   * @brief This API reads the data from the given register address of the sensor.
   */
 -int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev)
 +int8_t BME680::getRegs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
  {
  	int8_t rslt;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
 -		if (dev->intf == BME680_SPI_INTF) {
 +		if (intf == BME680_SPI_INTF) {
  			/* Set the memory page */
 -			rslt = set_mem_page(reg_addr, dev);
 +			rslt = setMemPage(reg_addr);
  			if (rslt == BME680_OK)
  				reg_addr = reg_addr | BME680_SPI_RD_MSK;
  		}
 -		dev->com_rslt = dev->read(dev->dev_id, reg_addr, reg_data, len);
 -		if (dev->com_rslt != 0)
 +		com_rslt = read(dev_id, reg_addr, reg_data, len);
 +		if (com_rslt != 0)
  			rslt = BME680_E_COM_FAIL;
  	}
 @@ -337,7 +108,7 @@ int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct   * @brief This API writes the given data to the register address
   * of the sensor.
   */
 -int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev)
 +int8_t BME680::setRegs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len)
  {
  	int8_t rslt;
  	/* Length of the temporary buffer is 2*(length of register)*/
 @@ -345,14 +116,14 @@ int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t  	uint16_t index;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
  		if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) {
  			/* Interleave the 2 arrays */
  			for (index = 0; index < len; index++) {
 -				if (dev->intf == BME680_SPI_INTF) {
 +				if (intf == BME680_SPI_INTF) {
  					/* Set the memory page */
 -					rslt = set_mem_page(reg_addr[index], dev);
 +					rslt = setMemPage(reg_addr[index]);
  					tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK;
  				} else {
  					tmp_buff[(2 * index)] = reg_addr[index];
 @@ -361,8 +132,8 @@ int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t  			}
  			/* Write the interleaved array */
  			if (rslt == BME680_OK) {
 -				dev->com_rslt = dev->write(dev->dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1);
 -				if (dev->com_rslt != 0)
 +				com_rslt = write(dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1);
 +				if (com_rslt != 0)
  					rslt = BME680_E_COM_FAIL;
  			}
  		} else {
 @@ -376,7 +147,7 @@ int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t  /*!
   * @brief This API performs the soft reset of the sensor.
   */
 -int8_t bme680_soft_reset(struct bme680_dev *dev)
 +int8_t BME680::softReset()
  {
  	int8_t rslt;
  	uint8_t reg_addr = BME680_SOFT_RESET_ADDR;
 @@ -384,21 +155,21 @@ int8_t bme680_soft_reset(struct bme680_dev *dev)  	uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
 -		if (dev->intf == BME680_SPI_INTF)
 -			rslt = get_mem_page(dev);
 +		if (intf == BME680_SPI_INTF)
 +			rslt = getMemPage();
  		/* Reset the device */
  		if (rslt == BME680_OK) {
 -			rslt = bme680_set_regs(®_addr, &soft_rst_cmd, 1, dev);
 +			rslt = setRegs(®_addr, &soft_rst_cmd, 1);
  			/* Wait for 5ms */
 -			dev->delay_ms(BME680_RESET_PERIOD);
 +			delay_ms(BME680_RESET_PERIOD);
  			if (rslt == BME680_OK) {
  				/* After reset get the memory page */
 -				if (dev->intf == BME680_SPI_INTF)
 -					rslt = get_mem_page(dev);
 +				if (intf == BME680_SPI_INTF)
 +					rslt = getMemPage();
  			}
  		}
  	}
 @@ -410,7 +181,7 @@ int8_t bme680_soft_reset(struct bme680_dev *dev)   * @brief This API is used to set the oversampling, filter and T,P,H, gas selection
   * settings in the sensor.
   */
 -int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
 +int8_t BME680::setSensorSettings(uint16_t desired_settings)
  {
  	int8_t rslt;
  	uint8_t reg_addr;
 @@ -418,28 +189,28 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *  	uint8_t count = 0;
  	uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 };
  	uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
 -	uint8_t intended_power_mode = dev->power_mode; /* Save intended power mode */
 +	uint8_t intended_power_mode = power_mode; /* Save intended power mode */
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
  		if (desired_settings & BME680_GAS_MEAS_SEL)
 -			rslt = set_gas_config(dev);
 +			rslt = setGasConfig();
 -		dev->power_mode = BME680_SLEEP_MODE;
 +		power_mode = BME680_SLEEP_MODE;
  		if (rslt == BME680_OK)
 -			rslt = bme680_set_sensor_mode(dev);
 +			rslt = getSensorMode();
  		/* Selecting the filter */
  		if (desired_settings & BME680_FILTER_SEL) {
 -			rslt = boundary_check(&dev->tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127, dev);
 +			rslt = boundaryCheck(&tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127);
  			reg_addr = BME680_CONF_ODR_FILT_ADDR;
  			if (rslt == BME680_OK)
 -				rslt = bme680_get_regs(reg_addr, &data, 1, dev);
 +				rslt = getRegs(reg_addr, &data, 1);
  			if (desired_settings & BME680_FILTER_SEL)
 -				data = BME680_SET_BITS(data, BME680_FILTER, dev->tph_sett.filter);
 +				data = BME680_SET_BITS(data, BME680_FILTER, tph_sett.filter);
  			reg_array[count] = reg_addr; /* Append configuration */
  			data_array[count] = data;
 @@ -448,13 +219,13 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *  		/* Selecting heater control for the sensor */
  		if (desired_settings & BME680_HCNTRL_SEL) {
 -			rslt = boundary_check(&dev->gas_sett.heatr_ctrl, BME680_ENABLE_HEATER,
 -				BME680_DISABLE_HEATER, dev);
 +			rslt = boundaryCheck(&gas_sett.heatr_ctrl, BME680_ENABLE_HEATER,
 +				BME680_DISABLE_HEATER);
  			reg_addr = BME680_CONF_HEAT_CTRL_ADDR;
  			if (rslt == BME680_OK)
 -				rslt = bme680_get_regs(reg_addr, &data, 1, dev);
 -			data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, dev->gas_sett.heatr_ctrl);
 +				rslt = getRegs(reg_addr, &data, 1);
 +			data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, gas_sett.heatr_ctrl);
  			reg_array[count] = reg_addr; /* Append configuration */
  			data_array[count] = data;
 @@ -463,17 +234,17 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *  		/* Selecting heater T,P oversampling for the sensor */
  		if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
 -			rslt = boundary_check(&dev->tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X, dev);
 +			rslt = boundaryCheck(&tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X);
  			reg_addr = BME680_CONF_T_P_MODE_ADDR;
  			if (rslt == BME680_OK)
 -				rslt = bme680_get_regs(reg_addr, &data, 1, dev);
 +				rslt = getRegs(reg_addr, &data, 1);
  			if (desired_settings & BME680_OST_SEL)
 -				data = BME680_SET_BITS(data, BME680_OST, dev->tph_sett.os_temp);
 +				data = BME680_SET_BITS(data, BME680_OST, tph_sett.os_temp);
  			if (desired_settings & BME680_OSP_SEL)
 -				data = BME680_SET_BITS(data, BME680_OSP, dev->tph_sett.os_pres);
 +				data = BME680_SET_BITS(data, BME680_OSP, tph_sett.os_pres);
  			reg_array[count] = reg_addr;
  			data_array[count] = data;
 @@ -482,12 +253,12 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *  		/* Selecting humidity oversampling for the sensor */
  		if (desired_settings & BME680_OSH_SEL) {
 -			rslt = boundary_check(&dev->tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X, dev);
 +			rslt = boundaryCheck(&tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X);
  			reg_addr = BME680_CONF_OS_H_ADDR;
  			if (rslt == BME680_OK)
 -				rslt = bme680_get_regs(reg_addr, &data, 1, dev);
 -			data = BME680_SET_BITS_POS_0(data, BME680_OSH, dev->tph_sett.os_hum);
 +				rslt = getRegs(reg_addr, &data, 1);
 +			data = BME680_SET_BITS_POS_0(data, BME680_OSH, tph_sett.os_hum);
  			reg_array[count] = reg_addr; /* Append configuration */
  			data_array[count] = data;
 @@ -496,24 +267,24 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *  		/* Selecting the runGas and NB conversion settings for the sensor */
  		if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
 -			rslt = boundary_check(&dev->gas_sett.run_gas, BME680_RUN_GAS_DISABLE,
 -				BME680_RUN_GAS_ENABLE, dev);
 +			rslt = boundaryCheck(&gas_sett.run_gas, BME680_RUN_GAS_DISABLE,
 +				BME680_RUN_GAS_ENABLE);
  			if (rslt == BME680_OK) {
  				/* Validate boundary conditions */
 -				rslt = boundary_check(&dev->gas_sett.nb_conv, BME680_NBCONV_MIN,
 -					BME680_NBCONV_MAX, dev);
 +				rslt = boundaryCheck(&gas_sett.nb_conv, BME680_NBCONV_MIN,
 +					BME680_NBCONV_MAX);
  			}
  			reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR;
  			if (rslt == BME680_OK)
 -				rslt = bme680_get_regs(reg_addr, &data, 1, dev);
 +				rslt = getRegs(reg_addr, &data, 1);
  			if (desired_settings & BME680_RUN_GAS_SEL)
 -				data = BME680_SET_BITS(data, BME680_RUN_GAS, dev->gas_sett.run_gas);
 +				data = BME680_SET_BITS(data, BME680_RUN_GAS, gas_sett.run_gas);
  			if (desired_settings & BME680_NBCONV_SEL)
 -				data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, dev->gas_sett.nb_conv);
 +				data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, gas_sett.nb_conv);
  			reg_array[count] = reg_addr; /* Append configuration */
  			data_array[count] = data;
 @@ -521,10 +292,10 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *  		}
  		if (rslt == BME680_OK)
 -			rslt = bme680_set_regs(reg_array, data_array, count, dev);
 +			rslt = setRegs(reg_array, data_array, count);
  		/* Restore previous intended power mode */
 -		dev->power_mode = intended_power_mode;
 +		power_mode = intended_power_mode;
  	}
  	return rslt;
 @@ -534,7 +305,7 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *   * @brief This API is used to get the oversampling, filter and T,P,H, gas selection
   * settings in the sensor.
   */
 -int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
 +int8_t BME680::getSensorSettings(uint16_t desired_settings)
  {
  	int8_t rslt;
  	/* starting address of the register array for burst read*/
 @@ -542,37 +313,37 @@ int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *  	uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
 -		rslt = bme680_get_regs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH, dev);
 +		rslt = getRegs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH);
  		if (rslt == BME680_OK) {
  			if (desired_settings & BME680_GAS_MEAS_SEL)
 -				rslt = get_gas_config(dev);
 +				rslt = getGasConfig();
  			/* get the T,P,H ,Filter,ODR settings here */
  			if (desired_settings & BME680_FILTER_SEL)
 -				dev->tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX],
 +				tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX],
  					BME680_FILTER);
  			if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
 -				dev->tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST);
 -				dev->tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP);
 +				tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST);
 +				tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP);
  			}
  			if (desired_settings & BME680_OSH_SEL)
 -				dev->tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX],
 +				tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX],
  					BME680_OSH);
  			/* get the gas related settings */
  			if (desired_settings & BME680_HCNTRL_SEL)
 -				dev->gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX],
 +				gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX],
  					BME680_HCTRL);
  			if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
 -				dev->gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX],
 +				gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX],
  					BME680_NBCONV);
 -				dev->gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX],
 +				gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX],
  					BME680_RUN_GAS);
  			}
  		}
 @@ -586,7 +357,7 @@ int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *  /*!
   * @brief This API is used to set the power mode of the sensor.
   */
 -int8_t bme680_set_sensor_mode(struct bme680_dev *dev)
 +int8_t BME680::setSensorMode()
  {
  	int8_t rslt;
  	uint8_t tmp_pow_mode;
 @@ -594,28 +365,28 @@ int8_t bme680_set_sensor_mode(struct bme680_dev *dev)  	uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
  		/* Call repeatedly until in sleep */
  		do {
 -			rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1, dev);
 +			rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1);
  			if (rslt == BME680_OK) {
  				/* Put to sleep before changing mode */
  				pow_mode = (tmp_pow_mode & BME680_MODE_MSK);
  				if (pow_mode != BME680_SLEEP_MODE) {
  					tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */
 -					rslt = bme680_set_regs(®_addr, &tmp_pow_mode, 1, dev);
 -					dev->delay_ms(BME680_POLL_PERIOD_MS);
 +					rslt = setRegs(®_addr, &tmp_pow_mode, 1);
 +					delay_ms(BME680_POLL_PERIOD_MS);
  				}
  			}
  		} while (pow_mode != BME680_SLEEP_MODE);
  		/* Already in sleep */
 -		if (dev->power_mode != BME680_SLEEP_MODE) {
 -			tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (dev->power_mode & BME680_MODE_MSK);
 +		if (power_mode != BME680_SLEEP_MODE) {
 +			tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (power_mode & BME680_MODE_MSK);
  			if (rslt == BME680_OK)
 -				rslt = bme680_set_regs(®_addr, &tmp_pow_mode, 1, dev);
 +				rslt = setRegs(®_addr, &tmp_pow_mode, 1);
  		}
  	}
 @@ -625,17 +396,17 @@ int8_t bme680_set_sensor_mode(struct bme680_dev *dev)  /*!
   * @brief This API is used to get the power mode of the sensor.
   */
 -int8_t bme680_get_sensor_mode(struct bme680_dev *dev)
 +int8_t BME680::getSensorMode()
  {
  	int8_t rslt;
  	uint8_t mode;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
 -		rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &mode, 1, dev);
 +		rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &mode, 1);
  		/* Masking the other register bit info*/
 -		dev->power_mode = mode & BME680_MODE_MSK;
 +		power_mode = mode & BME680_MODE_MSK;
  	}
  	return rslt;
 @@ -644,15 +415,15 @@ int8_t bme680_get_sensor_mode(struct bme680_dev *dev)  /*!
   * @brief This API is used to set the profile duration of the sensor.
   */
 -void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev)
 +void BME680::setProfileDur(uint16_t duration)
  {
  	uint32_t tph_dur; /* Calculate in us */
  	uint32_t meas_cycles;
  	uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};
 -	meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
 -	meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
 -	meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];
 +	meas_cycles = os_to_meas_cycles[tph_sett.os_temp];
 +	meas_cycles += os_to_meas_cycles[tph_sett.os_pres];
 +	meas_cycles += os_to_meas_cycles[tph_sett.os_hum];
  	/* TPH measurement duration */
  	tph_dur = meas_cycles * UINT32_C(1963);
 @@ -663,21 +434,21 @@ void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev)  	tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
  	/* The remaining time should be used for heating */
 -	dev->gas_sett.heatr_dur = duration - (uint16_t) tph_dur;
 +	gas_sett.heatr_dur = duration - (uint16_t) tph_dur;
  }
  /*!
   * @brief This API is used to get the profile duration of the sensor.
   */
 -void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev)
 +void BME680::getProfileDur(uint16_t *duration)
  {
  	uint32_t tph_dur; /* Calculate in us */
  	uint32_t meas_cycles;
  	uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};
 -	meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
 -	meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
 -	meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];
 +	meas_cycles = os_to_meas_cycles[tph_sett.os_temp];
 +	meas_cycles += os_to_meas_cycles[tph_sett.os_pres];
 +	meas_cycles += os_to_meas_cycles[tph_sett.os_hum];
  	/* TPH measurement duration */
  	tph_dur = meas_cycles * UINT32_C(1963);
 @@ -691,9 +462,9 @@ void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev)  	*duration = (uint16_t) tph_dur;
  	/* Get the gas duration only when the run gas is enabled */
 -	if (dev->gas_sett.run_gas) {
 +	if (gas_sett.run_gas) {
  		/* The remaining time should be used for heating */
 -		*duration += dev->gas_sett.heatr_dur;
 +		*duration += gas_sett.heatr_dur;
  	}
  }
 @@ -702,20 +473,20 @@ void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev)   * from the sensor, compensates the data and store it in the bme680_data
   * structure instance passed by the user.
   */
 -int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev)
 +int8_t BME680::getSensorData(struct bme680_field_data *data)
  {
  	int8_t rslt;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
  		/* Reading the sensor data in forced mode only */
 -		rslt = read_field_data(data, dev);
 +		rslt = readFieldData(data);
  		if (rslt == BME680_OK) {
  			if (data->status & BME680_NEW_DATA_MSK)
 -				dev->new_fields = 1;
 +				new_fields = 1;
  			else
 -				dev->new_fields = 0;
 +				new_fields = 0;
  		}
  	}
 @@ -725,77 +496,77 @@ int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev  /*!
   * @brief This internal API is used to read the calibrated data from the sensor.
   */
 -static int8_t get_calib_data(struct bme680_dev *dev)
 +int8_t BME680::getCalibData()
  {
  	int8_t rslt;
  	uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 };
  	uint8_t temp_var = 0; /* Temporary variable */
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
 -		rslt = bme680_get_regs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN, dev);
 +		rslt = getRegs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN);
  		/* Append the second half in the same array */
  		if (rslt == BME680_OK)
 -			rslt = bme680_get_regs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN]
 -			, BME680_COEFF_ADDR2_LEN, dev);
 +			rslt = getRegs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN]
 +			, BME680_COEFF_ADDR2_LEN);
  		/* Temperature related coefficients */
 -		dev->calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG],
 +		calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG],
  			coeff_array[BME680_T1_LSB_REG]));
 -		dev->calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG],
 +		calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG],
  			coeff_array[BME680_T2_LSB_REG]));
 -		dev->calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]);
 +		calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]);
  		/* Pressure related coefficients */
 -		dev->calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG],
 +		calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG],
  			coeff_array[BME680_P1_LSB_REG]));
 -		dev->calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG],
 +		calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG],
  			coeff_array[BME680_P2_LSB_REG]));
 -		dev->calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG];
 -		dev->calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG],
 +		calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG];
 +		calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG],
  			coeff_array[BME680_P4_LSB_REG]));
 -		dev->calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG],
 +		calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG],
  			coeff_array[BME680_P5_LSB_REG]));
 -		dev->calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]);
 -		dev->calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]);
 -		dev->calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG],
 +		calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]);
 +		calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]);
 +		calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG],
  			coeff_array[BME680_P8_LSB_REG]));
 -		dev->calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG],
 +		calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG],
  			coeff_array[BME680_P9_LSB_REG]));
 -		dev->calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]);
 +		calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]);
  		/* Humidity related coefficients */
 -		dev->calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
 +		calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
  			| (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK));
 -		dev->calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
 +		calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
  			| ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL));
 -		dev->calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG];
 -		dev->calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG];
 -		dev->calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG];
 -		dev->calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG];
 -		dev->calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG];
 +		calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG];
 +		calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG];
 +		calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG];
 +		calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG];
 +		calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG];
  		/* Gas heater related coefficients */
 -		dev->calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG];
 -		dev->calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG],
 +		calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG];
 +		calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG],
  			coeff_array[BME680_GH2_LSB_REG]));
 -		dev->calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG];
 +		calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG];
  		/* Other coefficients */
  		if (rslt == BME680_OK) {
 -			rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1, dev);
 +			rslt = getRegs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1);
 -			dev->calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16);
 +			calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16);
  			if (rslt == BME680_OK) {
 -				rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1, dev);
 +				rslt = getRegs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1);
 -				dev->calib.res_heat_val = (int8_t) temp_var;
 +				calib.res_heat_val = (int8_t) temp_var;
  				if (rslt == BME680_OK)
 -					rslt = bme680_get_regs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1, dev);
 +					rslt = getRegs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1);
  			}
  		}
 -		dev->calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16;
 +		calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16;
  	}
  	return rslt;
 @@ -804,28 +575,28 @@ static int8_t get_calib_data(struct bme680_dev *dev)  /*!
   * @brief This internal API is used to set the gas configuration of the sensor.
   */
 -static int8_t set_gas_config(struct bme680_dev *dev)
 +int8_t BME680::setGasConfig()
  {
  	int8_t rslt;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
  		uint8_t reg_addr[2] = {0};
  		uint8_t reg_data[2] = {0};
 -		if (dev->power_mode == BME680_FORCED_MODE) {
 +		if (power_mode == BME680_FORCED_MODE) {
  			reg_addr[0] = BME680_RES_HEAT0_ADDR;
 -			reg_data[0] = calc_heater_res(dev->gas_sett.heatr_temp, dev);
 +			reg_data[0] = calcHeaterRes(gas_sett.heatr_temp);
  			reg_addr[1] = BME680_GAS_WAIT0_ADDR;
 -			reg_data[1] = calc_heater_dur(dev->gas_sett.heatr_dur);
 -			dev->gas_sett.nb_conv = 0;
 +			reg_data[1] = calcHeaterDur(gas_sett.heatr_dur);
 +			gas_sett.nb_conv = 0;
  		} else {
  			rslt = BME680_W_DEFINE_PWR_MODE;
  		}
  		if (rslt == BME680_OK)
 -			rslt = bme680_set_regs(reg_addr, reg_data, 2, dev);
 +			rslt = setRegs(reg_addr, reg_data, 2);
  	}
  	return rslt;
 @@ -836,7 +607,7 @@ static int8_t set_gas_config(struct bme680_dev *dev)   * @note heatr_temp and heatr_dur values are currently register data
   * and not the actual values set
   */
 -static int8_t get_gas_config(struct bme680_dev *dev)
 +int8_t BME680::getGasConfig()
  {
  	int8_t rslt;
  	/* starting address of the register array for burst read*/
 @@ -845,21 +616,21 @@ static int8_t get_gas_config(struct bme680_dev *dev)  	uint8_t reg_data = 0;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
 -		if (BME680_SPI_INTF == dev->intf) {
 +		if (BME680_SPI_INTF == intf) {
  			/* Memory page switch the SPI address*/
 -			rslt = set_mem_page(reg_addr1, dev);
 +			rslt = setMemPage(reg_addr1);
  		}
  		if (rslt == BME680_OK) {
 -			rslt = bme680_get_regs(reg_addr1, ®_data, 1, dev);
 +			rslt = getRegs(reg_addr1, ®_data, 1);
  			if (rslt == BME680_OK) {
 -				dev->gas_sett.heatr_temp = reg_data;
 -				rslt = bme680_get_regs(reg_addr2, ®_data, 1, dev);
 +				gas_sett.heatr_temp = reg_data;
 +				rslt = getRegs(reg_addr2, ®_data, 1);
  				if (rslt == BME680_OK) {
  					/* Heating duration register value */
 -					dev->gas_sett.heatr_dur = reg_data;
 +					gas_sett.heatr_dur = reg_data;
  				}
  			}
  		}
 @@ -873,19 +644,19 @@ static int8_t get_gas_config(struct bme680_dev *dev)  /*!
   * @brief This internal API is used to calculate the temperature value.
   */
 -static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
 +int16_t BME680::calcTemperature(uint32_t temp_adc)
  {
  	int64_t var1;
  	int64_t var2;
  	int64_t var3;
  	int16_t calc_temp;
 -	var1 = ((int32_t) temp_adc >> 3) - ((int32_t) dev->calib.par_t1 << 1);
 -	var2 = (var1 * (int32_t) dev->calib.par_t2) >> 11;
 +	var1 = ((int32_t) temp_adc >> 3) - ((int32_t) calib.par_t1 << 1);
 +	var2 = (var1 * (int32_t) calib.par_t2) >> 11;
  	var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
 -	var3 = ((var3) * ((int32_t) dev->calib.par_t3 << 4)) >> 14;
 -	dev->calib.t_fine = (int32_t) (var2 + var3);
 -	calc_temp = (int16_t) (((dev->calib.t_fine * 5) + 128) >> 8);
 +	var3 = ((var3) * ((int32_t) calib.par_t3 << 4)) >> 14;
 +	calib.t_fine = (int32_t) (var2 + var3);
 +	calc_temp = (int16_t) (((calib.t_fine * 5) + 128) >> 8);
  	return calc_temp;
  }
 @@ -893,39 +664,39 @@ static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)  /*!
   * @brief This internal API is used to calculate the pressure value.
   */
 -static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
 +uint32_t BME680::calcPressure(uint32_t pres_adc)
  {
  	int32_t var1;
  	int32_t var2;
  	int32_t var3;
  	int32_t pressure_comp;
 -	var1 = (((int32_t)dev->calib.t_fine) >> 1) - 64000;
 +	var1 = (((int32_t)calib.t_fine) >> 1) - 64000;
  	var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) *
 -		(int32_t)dev->calib.par_p6) >> 2;
 -	var2 = var2 + ((var1 * (int32_t)dev->calib.par_p5) << 1);
 -	var2 = (var2 >> 2) + ((int32_t)dev->calib.par_p4 << 16);
 +		(int32_t)calib.par_p6) >> 2;
 +	var2 = var2 + ((var1 * (int32_t)calib.par_p5) << 1);
 +	var2 = (var2 >> 2) + ((int32_t)calib.par_p4 << 16);
  	var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
 -		((int32_t)dev->calib.par_p3 << 5)) >> 3) +
 -		(((int32_t)dev->calib.par_p2 * var1) >> 1);
 +		((int32_t)calib.par_p3 << 5)) >> 3) +
 +		(((int32_t)calib.par_p2 * var1) >> 1);
  	var1 = var1 >> 18;
 -	var1 = ((32768 + var1) * (int32_t)dev->calib.par_p1) >> 15;
 +	var1 = ((32768 + var1) * (int32_t)calib.par_p1) >> 15;
  	pressure_comp = 1048576 - pres_adc;
  	pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125));
  	if (pressure_comp >= BME680_MAX_OVERFLOW_VAL)
  		pressure_comp = ((pressure_comp / var1) << 1);
  	else
  		pressure_comp = ((pressure_comp << 1) / var1);
 -	var1 = ((int32_t)dev->calib.par_p9 * (int32_t)(((pressure_comp >> 3) *
 +	var1 = ((int32_t)calib.par_p9 * (int32_t)(((pressure_comp >> 3) *
  		(pressure_comp >> 3)) >> 13)) >> 12;
  	var2 = ((int32_t)(pressure_comp >> 2) *
 -		(int32_t)dev->calib.par_p8) >> 13;
 +		(int32_t)calib.par_p8) >> 13;
  	var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) *
  		(int32_t)(pressure_comp >> 8) *
 -		(int32_t)dev->calib.par_p10) >> 17;
 +		(int32_t)calib.par_p10) >> 17;
  	pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 +
 -		((int32_t)dev->calib.par_p7 << 7)) >> 4);
 +		((int32_t)calib.par_p7 << 7)) >> 4);
  	return (uint32_t)pressure_comp;
 @@ -934,7 +705,7 @@ static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)  /*!
   * @brief This internal API is used to calculate the humidity value.
   */
 -static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
 +uint32_t BME680::calcHumidity(uint16_t hum_adc)
  {
  	int32_t var1;
  	int32_t var2;
 @@ -945,16 +716,16 @@ static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)  	int32_t temp_scaled;
  	int32_t calc_hum;
 -	temp_scaled = (((int32_t) dev->calib.t_fine * 5) + 128) >> 8;
 -	var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) dev->calib.par_h1 * 16)))
 -		- (((temp_scaled * (int32_t) dev->calib.par_h3) / ((int32_t) 100)) >> 1);
 -	var2 = ((int32_t) dev->calib.par_h2
 -		* (((temp_scaled * (int32_t) dev->calib.par_h4) / ((int32_t) 100))
 -			+ (((temp_scaled * ((temp_scaled * (int32_t) dev->calib.par_h5) / ((int32_t) 100))) >> 6)
 +	temp_scaled = (((int32_t) calib.t_fine * 5) + 128) >> 8;
 +	var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) calib.par_h1 * 16)))
 +		- (((temp_scaled * (int32_t) calib.par_h3) / ((int32_t) 100)) >> 1);
 +	var2 = ((int32_t) calib.par_h2
 +		* (((temp_scaled * (int32_t) calib.par_h4) / ((int32_t) 100))
 +			+ (((temp_scaled * ((temp_scaled * (int32_t) calib.par_h5) / ((int32_t) 100))) >> 6)
  				/ ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10;
  	var3 = var1 * var2;
 -	var4 = (int32_t) dev->calib.par_h6 << 7;
 -	var4 = ((var4) + ((temp_scaled * (int32_t) dev->calib.par_h7) / ((int32_t) 100))) >> 4;
 +	var4 = (int32_t) calib.par_h6 << 7;
 +	var4 = ((var4) + ((temp_scaled * (int32_t) calib.par_h7) / ((int32_t) 100))) >> 4;
  	var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
  	var6 = (var4 * var5) >> 1;
  	calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12;
 @@ -970,7 +741,7 @@ static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)  /*!
   * @brief This internal API is used to calculate the Gas Resistance value.
   */
 -static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
 +uint32_t BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range)
  {
  	int64_t var1;
  	uint64_t var2;
 @@ -987,7 +758,7 @@ static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, con  		UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000),
  		UINT32_C(250000), UINT32_C(125000) };
 -	var1 = (int64_t) ((1340 + (5 * (int64_t) dev->calib.range_sw_err)) *
 +	var1 = (int64_t) ((1340 + (5 * (int64_t) calib.range_sw_err)) *
  		((int64_t) lookupTable1[gas_range])) >> 16;
  	var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1);
  	var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9);
 @@ -999,7 +770,7 @@ static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, con  /*!
   * @brief This internal API is used to calculate the Heat Resistance value.
   */
 -static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
 +uint8_t BME680::calcHeaterRes(uint16_t temp)
  {
  	uint8_t heatr_res;
  	int32_t var1;
 @@ -1012,11 +783,11 @@ static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev)  	if (temp > 400) /* Cap temperature */
  		temp = 400;
 -	var1 = (((int32_t) dev->amb_temp * dev->calib.par_gh3) / 1000) * 256;
 -	var2 = (dev->calib.par_gh1 + 784) * (((((dev->calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10);
 +	var1 = (((int32_t) amb_temp * calib.par_gh3) / 1000) * 256;
 +	var2 = (calib.par_gh1 + 784) * (((((calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10);
  	var3 = var1 + (var2 / 2);
 -	var4 = (var3 / (dev->calib.res_heat_range + 4));
 -	var5 = (131 * dev->calib.res_heat_val) + 65536;
 +	var4 = (var3 / (calib.res_heat_range + 4));
 +	var5 = (131 * calib.res_heat_val) + 65536;
  	heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34);
  	heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100);
 @@ -1030,26 +801,26 @@ static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev)   * @brief This internal API is used to calculate the
   * temperature value in float format
   */
 -static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
 +float BME680::calcTemperature(uint32_t temp_adc)
  {
  	float var1 = 0;
  	float var2 = 0;
  	float calc_temp = 0;
  	/* calculate var1 data */
 -	var1  = ((((float)temp_adc / 16384.0f) - ((float)dev->calib.par_t1 / 1024.0f))
 -			* ((float)dev->calib.par_t2));
 +	var1  = ((((float)temp_adc / 16384.0f) - ((float)calib.par_t1 / 1024.0f))
 +			* ((float)calib.par_t2));
  	/* calculate var2 data */
 -	var2  = (((((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f)) *
 -		(((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f))) *
 -		((float)dev->calib.par_t3 * 16.0f));
 +	var2  = (((((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f)) *
 +		(((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f))) *
 +		((float)calib.par_t3 * 16.0f));
  	/* t_fine value*/
 -	dev->calib.t_fine = (var1 + var2);
 +	calib.t_fine = (var1 + var2);
  	/* compensated temperature data*/
 -	calc_temp  = ((dev->calib.t_fine) / 5120.0f);
 +	calc_temp  = ((calib.t_fine) / 5120.0f);
  	return calc_temp;
  }
 @@ -1058,30 +829,30 @@ static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)   * @brief This internal API is used to calculate the
   * pressure value in float format
   */
 -static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
 +float BME680::calcPressure(uint32_t pres_adc)
  {
  	float var1 = 0;
  	float var2 = 0;
  	float var3 = 0;
  	float calc_pres = 0;
 -	var1 = (((float)dev->calib.t_fine / 2.0f) - 64000.0f);
 -	var2 = var1 * var1 * (((float)dev->calib.par_p6) / (131072.0f));
 -	var2 = var2 + (var1 * ((float)dev->calib.par_p5) * 2.0f);
 -	var2 = (var2 / 4.0f) + (((float)dev->calib.par_p4) * 65536.0f);
 -	var1 = (((((float)dev->calib.par_p3 * var1 * var1) / 16384.0f)
 -		+ ((float)dev->calib.par_p2 * var1)) / 524288.0f);
 -	var1 = ((1.0f + (var1 / 32768.0f)) * ((float)dev->calib.par_p1));
 +	var1 = (((float)calib.t_fine / 2.0f) - 64000.0f);
 +	var2 = var1 * var1 * (((float)calib.par_p6) / (131072.0f));
 +	var2 = var2 + (var1 * ((float)calib.par_p5) * 2.0f);
 +	var2 = (var2 / 4.0f) + (((float)calib.par_p4) * 65536.0f);
 +	var1 = (((((float)calib.par_p3 * var1 * var1) / 16384.0f)
 +		+ ((float)calib.par_p2 * var1)) / 524288.0f);
 +	var1 = ((1.0f + (var1 / 32768.0f)) * ((float)calib.par_p1));
  	calc_pres = (1048576.0f - ((float)pres_adc));
  	/* Avoid exception caused by division by zero */
  	if ((int)var1 != 0) {
  		calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1);
 -		var1 = (((float)dev->calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f;
 -		var2 = calc_pres * (((float)dev->calib.par_p8) / 32768.0f);
 +		var1 = (((float)calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f;
 +		var2 = calc_pres * (((float)calib.par_p8) / 32768.0f);
  		var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f)
 -			* (dev->calib.par_p10 / 131072.0f));
 -		calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)dev->calib.par_p7 * 128.0f)) / 16.0f);
 +			* (calib.par_p10 / 131072.0f));
 +		calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)calib.par_p7 * 128.0f)) / 16.0f);
  	} else {
  		calc_pres = 0;
  	}
 @@ -1093,7 +864,7 @@ static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)   * @brief This internal API is used to calculate the
   * humidity value in float format
   */
 -static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
 +float BME680::calcHumidity(uint16_t hum_adc)
  {
  	float calc_hum = 0;
  	float var1 = 0;
 @@ -1103,17 +874,17 @@ static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)  	float temp_comp;
  	/* compensated temperature data*/
 -	temp_comp  = ((dev->calib.t_fine) / 5120.0f);
 +	temp_comp  = ((calib.t_fine) / 5120.0f);
 -	var1 = (float)((float)hum_adc) - (((float)dev->calib.par_h1 * 16.0f) + (((float)dev->calib.par_h3 / 2.0f)
 +	var1 = (float)((float)hum_adc) - (((float)calib.par_h1 * 16.0f) + (((float)calib.par_h3 / 2.0f)
  		* temp_comp));
 -	var2 = var1 * ((float)(((float) dev->calib.par_h2 / 262144.0f) * (1.0f + (((float)dev->calib.par_h4 / 16384.0f)
 -		* temp_comp) + (((float)dev->calib.par_h5 / 1048576.0f) * temp_comp * temp_comp))));
 +	var2 = var1 * ((float)(((float) calib.par_h2 / 262144.0f) * (1.0f + (((float)calib.par_h4 / 16384.0f)
 +		* temp_comp) + (((float)calib.par_h5 / 1048576.0f) * temp_comp * temp_comp))));
 -	var3 = (float) dev->calib.par_h6 / 16384.0f;
 +	var3 = (float) calib.par_h6 / 16384.0f;
 -	var4 = (float) dev->calib.par_h7 / 2097152.0f;
 +	var4 = (float) calib.par_h7 / 2097152.0f;
  	calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2);
 @@ -1129,7 +900,7 @@ static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)   * @brief This internal API is used to calculate the
   * gas resistance value in float format
   */
 -static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
 +float BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range)
  {
  	float calc_gas_res;
  	float var1 = 0;
 @@ -1143,7 +914,7 @@ static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const  	0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
  	-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
 -	var1 = (1340.0f + (5.0f * dev->calib.range_sw_err));
 +	var1 = (1340.0f + (5.0f * calib.range_sw_err));
  	var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f);
  	var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f);
 @@ -1157,7 +928,7 @@ static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const   * @brief This internal API is used to calculate the
   * heater resistance value in float format
   */
 -static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
 +float BME680::calcHeaterRes(uint16_t temp)
  {
  	float var1 = 0;
  	float var2 = 0;
 @@ -1169,13 +940,13 @@ static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev)  	if (temp > 400) /* Cap temperature */
  		temp = 400;
 -	var1 = (((float)dev->calib.par_gh1 / (16.0f)) + 49.0f);
 -	var2 = ((((float)dev->calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f);
 -	var3 = ((float)dev->calib.par_gh3 / (1024.0f));
 +	var1 = (((float)calib.par_gh1 / (16.0f)) + 49.0f);
 +	var2 = ((((float)calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f);
 +	var3 = ((float)calib.par_gh3 / (1024.0f));
  	var4 = (var1 * (1.0f + (var2 * (float)temp)));
 -	var5 = (var4 + (var3 * (float)dev->amb_temp));
 -	res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)dev->calib.res_heat_range)) *
 -		(1/(1 + ((float) dev->calib.res_heat_val * 0.002f)))) - 25));
 +	var5 = (var4 + (var3 * (float)amb_temp));
 +	res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)calib.res_heat_range)) *
 +		(1/(1 + ((float) calib.res_heat_val * 0.002f)))) - 25));
  	return res_heat;
  }
 @@ -1185,7 +956,7 @@ static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev)  /*!
   * @brief This internal API is used to calculate the Heat duration value.
   */
 -static uint8_t calc_heater_dur(uint16_t dur)
 +uint8_t BME680::calcHeaterDur(uint16_t dur)
  {
  	uint8_t factor = 0;
  	uint8_t durval;
 @@ -1206,7 +977,7 @@ static uint8_t calc_heater_dur(uint16_t dur)  /*!
   * @brief This internal API is used to calculate the field data of sensor.
   */
 -static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev)
 +int8_t BME680::readFieldData(struct bme680_field_data *data)
  {
  	int8_t rslt;
  	uint8_t buff[BME680_FIELD_LENGTH] = { 0 };
 @@ -1218,11 +989,10 @@ static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev  	uint8_t tries = 10;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	do {
  		if (rslt == BME680_OK) {
 -			rslt = bme680_get_regs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH,
 -				dev);
 +			rslt = getRegs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH);
  			data->status = buff[0] & BME680_NEW_DATA_MSK;
  			data->gas_index = buff[0] & BME680_GAS_INDEX_MSK;
 @@ -1241,14 +1011,14 @@ static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev  			data->status |= buff[14] & BME680_HEAT_STAB_MSK;
  			if (data->status & BME680_NEW_DATA_MSK) {
 -				data->temperature = calc_temperature(adc_temp, dev);
 -				data->pressure = calc_pressure(adc_pres, dev);
 -				data->humidity = calc_humidity(adc_hum, dev);
 -				data->gas_resistance = calc_gas_resistance(adc_gas_res, gas_range, dev);
 +				data->temperature = calcTemperature(adc_temp);
 +				data->pressure = calcPressure(adc_pres);
 +				data->humidity = calcHumidity(adc_hum);
 +				data->gas_resistance = calcGasResistance(adc_gas_res, gas_range);
  				break;
  			}
  			/* Delay to poll the data */
 -			dev->delay_ms(BME680_POLL_PERIOD_MS);
 +			delay_ms(BME680_POLL_PERIOD_MS);
  		}
  		tries--;
  	} while (tries);
 @@ -1262,34 +1032,34 @@ static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev  /*!
   * @brief This internal API is used to set the memory page based on register address.
   */
 -static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev)
 +int8_t BME680::setMemPage(uint8_t reg_addr)
  {
  	int8_t rslt;
  	uint8_t reg;
  	uint8_t mem_page;
  	/* Check for null pointers in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
  		if (reg_addr > 0x7f)
  			mem_page = BME680_MEM_PAGE1;
  		else
  			mem_page = BME680_MEM_PAGE0;
 -		if (mem_page != dev->mem_page) {
 -			dev->mem_page = mem_page;
 +		if (mem_page != mem_page) {
 +			mem_page = mem_page;
 -			dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1);
 -			if (dev->com_rslt != 0)
 +			com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1);
 +			if (com_rslt != 0)
  				rslt = BME680_E_COM_FAIL;
  			if (rslt == BME680_OK) {
  				reg = reg & (~BME680_MEM_PAGE_MSK);
 -				reg = reg | (dev->mem_page & BME680_MEM_PAGE_MSK);
 +				reg = reg | (mem_page & BME680_MEM_PAGE_MSK);
 -				dev->com_rslt = dev->write(dev->dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK,
 +				com_rslt = write(dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK,
  					®, 1);
 -				if (dev->com_rslt != 0)
 +				if (com_rslt != 0)
  					rslt = BME680_E_COM_FAIL;
  			}
  		}
 @@ -1301,19 +1071,19 @@ static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev)  /*!
   * @brief This internal API is used to get the memory page based on register address.
   */
 -static int8_t get_mem_page(struct bme680_dev *dev)
 +int8_t BME680::getMemPage()
  {
  	int8_t rslt;
  	uint8_t reg;
  	/* Check for null pointer in the device structure*/
 -	rslt = null_ptr_check(dev);
 +	rslt = nullPtrCheck();
  	if (rslt == BME680_OK) {
 -		dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1);
 -		if (dev->com_rslt != 0)
 +		com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1);
 +		if (com_rslt != 0)
  			rslt = BME680_E_COM_FAIL;
  		else
 -			dev->mem_page = reg & BME680_MEM_PAGE_MSK;
 +			mem_page = reg & BME680_MEM_PAGE_MSK;
  	}
  	return rslt;
 @@ -1323,7 +1093,7 @@ static int8_t get_mem_page(struct bme680_dev *dev)   * @brief This internal API is used to validate the boundary
   * conditions.
   */
 -static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev)
 +int8_t BME680::boundaryCheck(uint8_t *value, uint8_t min, uint8_t max)
  {
  	int8_t rslt = BME680_OK;
 @@ -1332,13 +1102,13 @@ static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bm  		if (*value < min) {
  			/* Auto correct the invalid value to minimum value */
  			*value = min;
 -			dev->info_msg |= BME680_I_MIN_CORRECTION;
 +			info_msg |= BME680_I_MIN_CORRECTION;
  		}
  		/* Check if value is above maximum value */
  		if (*value > max) {
  			/* Auto correct the invalid value to maximum value */
  			*value = max;
 -			dev->info_msg |= BME680_I_MAX_CORRECTION;
 +			info_msg |= BME680_I_MAX_CORRECTION;
  		}
  	} else {
  		rslt = BME680_E_NULL_PTR;
 @@ -1351,11 +1121,11 @@ static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bm   * @brief This internal API is used to validate the device structure pointer for
   * null conditions.
   */
 -static int8_t null_ptr_check(const struct bme680_dev *dev)
 +int8_t BME680::nullPtrCheck()
  {
  	int8_t rslt;
 -	if ((dev == NULL) || (dev->read == NULL) || (dev->write == NULL) || (dev->delay_ms == NULL)) {
 +	if ((read == NULL) || (write == NULL) || (delay_ms == NULL)) {
  		/* Device structure pointer is not valid */
  		rslt = BME680_E_NULL_PTR;
  	} else {
 @@ -1365,3 +1135,5 @@ static int8_t null_ptr_check(const struct bme680_dev *dev)  	return rslt;
  }
 +
 +BME680 bme680(BME680_I2C_ADDR_SECONDARY);
\ No newline at end of file | 
