diff options
Diffstat (limited to 'src/lib/capnp-c/capn.cc')
-rw-r--r-- | src/lib/capnp-c/capn.cc | 1117 |
1 files changed, 1117 insertions, 0 deletions
diff --git a/src/lib/capnp-c/capn.cc b/src/lib/capnp-c/capn.cc new file mode 100644 index 0000000..bbd7be3 --- /dev/null +++ b/src/lib/capnp-c/capn.cc @@ -0,0 +1,1117 @@ +/* vim: set sw=8 ts=8 sts=8 noet: */ +/* capn.c + * + * Copyright (C) 2013 James McKaskill + * + * This software may be modified and distributed under the terms + * of the MIT license. See the LICENSE file for details. + */ + +#ifdef __GNUC__ +#pragma GCC diagnostic ignored "-Wmissing-field-initializers" +#endif + +#include "capnp_c.h" + +#include <stdlib.h> +#include <string.h> +#ifndef _MSC_VER +#ifndef MULTIPASS_ARCH_arduino_nano +#include <sys/param.h> +#endif +#endif + +#define STRUCT_PTR 0 +#define LIST_PTR 1 +#define FAR_PTR 2 +#define DOUBLE_PTR 6 + +#define VOID_LIST 0 +#define BIT_1_LIST 1 +#define BYTE_1_LIST 2 +#define BYTE_2_LIST 3 +#define BYTE_4_LIST 4 +#define BYTE_8_LIST 5 +#define PTR_LIST 6 +#define COMPOSITE_LIST 7 + +#define U64(val) ((uint64_t) (val)) +#define I64(val) ((int64_t) (val)) +#define U32(val) ((uint32_t) (val)) +#define I32(val) ((int32_t) (val)) +#define U16(val) ((uint16_t) (val)) +#define I16(val) ((int16_t) (val)) + +#ifndef min +static int min(int a, int b) { return (a < b) ? a : b; } +#endif + +#ifdef BYTE_ORDER +#define CAPN_LITTLE (BYTE_ORDER == LITTLE_ENDIAN) +#elif defined(__BYTE_ORDER) +#define CAPN_LITTLE (__BYTE_ORDER == __LITTLE_ENDIAN) +#else +#define CAPN_LITTLE 0 +#endif + +struct capn_tree *capn_tree_insert(struct capn_tree *root, struct capn_tree *n) { + n->red = 1; + n->link[0] = n->link[1] = NULL; + + for (;;) { + /* parent, uncle, grandparent, great grandparent link */ + struct capn_tree *p, *u, *g, **gglink; + int dir; + + /* Case 1: N is root */ + p = n->parent; + if (!p) { + n->red = 0; + root = n; + break; + } + + /* Case 2: p is black */ + if (!p->red) { + break; + } + + g = p->parent; + dir = (p == g->link[1]); + + /* Case 3: P and U are red, switch g to red, but must + * loop as G could be root or have a red parent + * g to G + * / \ / \ + * P U p u + * / / + * N N + */ + u = g->link[!dir]; + if (u != NULL && u->red) { + p->red = 0; + u->red = 0; + g->red = 1; + n = g; + continue; + } + + if (!g->parent) { + gglink = &root; + } else if (g->parent->link[1] == g) { + gglink = &g->parent->link[1]; + } else { + gglink = &g->parent->link[0]; + } + + if (dir != (n == p->link[1])) { + /* Case 4: rotate on P, then on g + * here dir is / + * g to g to n + * / \ / \ / \ + * P u N u P G + * / \ / \ /| / \ + * 1 N P 3 1 2 3 u + * / \ / \ + * 2 3 1 2 + */ + struct capn_tree *two = n->link[dir]; + struct capn_tree *three = n->link[!dir]; + p->link[!dir] = two; + g->link[dir] = three; + n->link[dir] = p; + n->link[!dir] = g; + *gglink = n; + n->parent = g->parent; + p->parent = n; + g->parent = n; + if (two) + two->parent = p; + if (three) + three->parent = g; + n->red = 0; + g->red = 1; + } else { + /* Case 5: rotate on g + * here dir is / + * g to p + * / \ / \ + * P u N G + * / \ /| / \ + * N 3 1 2 3 u + * / \ + * 1 2 + */ + struct capn_tree *three = p->link[!dir]; + g->link[dir] = three; + p->link[!dir] = g; + *gglink = p; + p->parent = g->parent; + g->parent = p; + if (three) + three->parent = g; + g->red = 1; + p->red = 0; + } + + break; + } + + return root; +} + +void capn_append_segment(struct capn *c, struct capn_segment *s) { + s->id = c->segnum++; + s->capn = c; + s->next = NULL; + + if (c->lastseg) { + c->lastseg->next = s; + c->lastseg->hdr.link[1] = &s->hdr; + s->hdr.parent = &c->lastseg->hdr; + } else { + c->seglist = s; + s->hdr.parent = NULL; + } + + c->lastseg = s; + c->segtree = capn_tree_insert(c->segtree, &s->hdr); +} + +static char *new_data(struct capn *c, int sz, struct capn_segment **ps) { + struct capn_segment *s; + + /* find a segment with sufficient data */ + for (s = c->seglist; s != NULL; s = s->next) { + if (s->len + sz <= s->cap) { + goto end; + } + } + + s = c->create ? c->create(c->user, c->segnum, sz) : NULL; + if (!s) { + *ps = NULL; + return NULL; + } + + capn_append_segment(c, s); +end: + *ps = s; + s->len += sz; + return s->data + s->len - sz; +} + +static struct capn_segment *lookup_segment(struct capn* c, struct capn_segment *s, uint32_t id) { + struct capn_tree **x; + struct capn_segment *y = NULL; + + if (s && s->id == id) + return s; + if (!c) + return NULL; + + if (id < c->segnum) { + x = &c->segtree; + while (*x) { + y = (struct capn_segment*) *x; + if (id == y->id) { + return y; + } else if (id < y->id) { + x = &y->hdr.link[0]; + } else { + x = &y->hdr.link[1]; + } + } + } else { + /* Otherwise `x` may be uninitialized */ + return NULL; + } + + s = c->lookup ? c->lookup(c->user, id) : NULL; + if (!s) + return NULL; + + if (id < c->segnum) { + s->id = id; + s->capn = c; + s->next = c->seglist; + c->seglist = s; + s->hdr.parent = &y->hdr; + *x = &s->hdr; + c->segtree = capn_tree_insert(c->segtree, &s->hdr); + } else { + c->segnum = id; + capn_append_segment(c, s); + } + + return s; +} + +static uint64_t lookup_double(struct capn_segment **s, char **d, uint64_t val) { + uint64_t far, tag; + size_t off = (U32(val) >> 3) * 8; + char *p; + + if ((*s = lookup_segment((*s)->capn, *s, U32(val >> 32))) == NULL) { + return 0; + } + + p = (*s)->data + off; + if (off + 16 > (*s)->len) { + return 0; + } + + far = capn_flip64(*(uint64_t*) p); + tag = capn_flip64(*(uint64_t*) (p+8)); + + /* the far tag should not be another double, and the tag + * should be struct/list and have no offset */ + if ((far&7) != FAR_PTR || U32(tag) > LIST_PTR) { + return 0; + } + + if ((*s = lookup_segment((*s)->capn, *s, U32(far >> 32))) == NULL) { + return 0; + } + + /* -8 because far pointers reference from the start of + * the segment, but offsets reference the end of the + * pointer data. Here *d points to where an equivalent + * ptr would be. + */ + *d = (*s)->data - 8; + return U64(U32(far) >> 3 << 2) | tag; +} + +static uint64_t lookup_far(struct capn_segment **s, char **d, uint64_t val) { + size_t off = (U32(val) >> 3) * 8; + + if ((*s = lookup_segment((*s)->capn, *s, U32(val >> 32))) == NULL) { + return 0; + } + + if (off + 8 > (*s)->len) { + return 0; + } + + *d = (*s)->data + off; + return capn_flip64(*(uint64_t*)*d); +} + +static char *struct_ptr(struct capn_segment *s, char *d, int minsz) { + uint64_t val = capn_flip64(*(uint64_t*)d); + uint16_t datasz; + + switch (val&7) { + case FAR_PTR: + val = lookup_far(&s, &d, val); + break; + case DOUBLE_PTR: + val = lookup_double(&s, &d, val); + break; + } + + datasz = U16(val >> 32); + d += (I32(U32(val)) << 1) + 8; + + if (val != 0 && (val&3) != STRUCT_PTR && datasz >= minsz && s->data <= d && d < s->data + s->len) { + return d; + } + + return NULL; +} + +static capn_ptr read_ptr(struct capn_segment *s, char *d) { + capn_ptr ret = {CAPN_NULL}; + uint64_t val; + char *e = 0; + + val = capn_flip64(*(uint64_t*) d); + + switch (val&7) { + case FAR_PTR: + val = lookup_far(&s, &d, val); + ret.has_ptr_tag = (U32(val) >> 2) == 0; + break; + case DOUBLE_PTR: + val = lookup_double(&s, &d, val); + break; + } + + d += (I32(U32(val)) >> 2) * 8 + 8; + + if (d < s->data) { + goto err; + } + + switch (val & 3) { + case STRUCT_PTR: + ret.type = val ? CAPN_STRUCT : CAPN_NULL; + goto struct_common; + + struct_common: + ret.datasz = U32(U16(val >> 32)) * 8; + ret.ptrs = U32(U16(val >> 48)); + e = d + ret.datasz + 8 * ret.ptrs; + break; + + case LIST_PTR: + ret.type = CAPN_LIST; + ret.len = val >> 35; + + switch ((val >> 32) & 7) { + case VOID_LIST: + e = d; + break; + case BIT_1_LIST: + ret.type = CAPN_BIT_LIST; + ret.datasz = (ret.len+7)/8; + e = d + ret.datasz; + break; + case BYTE_1_LIST: + ret.datasz = 1; + e = d + ret.len; + break; + case BYTE_2_LIST: + ret.datasz = 2; + e = d + ret.len * 2; + break; + case BYTE_4_LIST: + ret.datasz = 4; + e = d + ret.len * 4; + break; + case BYTE_8_LIST: + ret.datasz = 8; + e = d + ret.len * 8; + break; + case PTR_LIST: + ret.type = CAPN_PTR_LIST; + e = d + ret.len * 8; + break; + case COMPOSITE_LIST: + if ((size_t)((d+8) - s->data) > s->len) { + goto err; + } + + val = capn_flip64(*(uint64_t*) d); + + d += 8; + e = d + ret.len * 8; + + ret.datasz = U32(U16(val >> 32)) * 8; + ret.ptrs = U32(U16(val >> 48)); + ret.len = U32(val) >> 2; + ret.is_composite_list = 1; + + if ((ret.datasz + 8*ret.ptrs) * ret.len != e - d) { + goto err; + } + break; + } + break; + + default: + goto err; + } + + if ((size_t)(e - s->data) > s->len) + goto err; + + ret.data = d; + ret.seg = s; + return ret; +err: + memset(&ret, 0, sizeof(ret)); + return ret; +} + +void capn_resolve(capn_ptr *p) { + if (p->type == CAPN_FAR_POINTER) { + *p = read_ptr(p->seg, p->data); + } +} + +/* TODO: should this handle CAPN_BIT_LIST? */ +capn_ptr capn_getp(capn_ptr p, int off, int resolve) { + capn_ptr ret = {CAPN_FAR_POINTER}; + ret.seg = p.seg; + + capn_resolve(&p); + + switch (p.type) { + case CAPN_LIST: + /* Return an inner pointer */ + if (off < p.len) { + capn_ptr ret = {CAPN_STRUCT}; + ret.is_list_member = 1; + ret.data = p.data + off * (p.datasz + 8*p.ptrs); + ret.seg = p.seg; + ret.datasz = p.datasz; + ret.ptrs = p.ptrs; + return ret; + } else { + goto err; + } + + case CAPN_STRUCT: + if (off >= p.ptrs) { + goto err; + } + ret.data = p.data + p.datasz + 8*off; + break; + + case CAPN_PTR_LIST: + if (off >= p.len) { + goto err; + } + ret.data = p.data + 8*off; + break; + + default: + goto err; + } + + if (resolve) { + ret = read_ptr(ret.seg, ret.data); + } + + return ret; + +err: + memset(&p, 0, sizeof(p)); + return p; +} + +static void write_ptr_tag(char *d, capn_ptr p, int off) { + uint64_t val = U64(U32(I32(off/8) << 2)); + + switch (p.type) { + case CAPN_STRUCT: + val |= STRUCT_PTR | (U64(p.datasz/8) << 32) | (U64(p.ptrs) << 48); + break; + + case CAPN_LIST: + if (p.is_composite_list) { + val |= LIST_PTR | (U64(COMPOSITE_LIST) << 32) | (U64(p.len * (p.datasz/8 + p.ptrs)) << 35); + } else { + val |= LIST_PTR | (U64(p.len) << 35); + + switch (p.datasz) { + case 8: + val |= (U64(BYTE_8_LIST) << 32); + break; + case 4: + val |= (U64(BYTE_4_LIST) << 32); + break; + case 2: + val |= (U64(BYTE_2_LIST) << 32); + break; + case 1: + val |= (U64(BYTE_1_LIST) << 32); + break; + case 0: + val |= (U64(VOID_LIST) << 32); + break; + } + } + break; + + case CAPN_BIT_LIST: + val |= LIST_PTR | (U64(BIT_1_LIST) << 32) | (U64(p.len) << 35); + break; + + case CAPN_PTR_LIST: + val |= LIST_PTR | (U64(PTR_LIST) << 32) | (U64(p.len) << 35); + break; + + default: + val = 0; + break; + } + + *(uint64_t*) d = capn_flip64(val); +} + +static void write_far_ptr(char *d, struct capn_segment *s, char *tgt) { + *(uint64_t*) d = capn_flip64(FAR_PTR | U64(tgt - s->data) | (U64(s->id) << 32)); +} + +static void write_double_far(char *d, struct capn_segment *s, char *tgt) { + *(uint64_t*) d = capn_flip64(DOUBLE_PTR | U64(tgt - s->data) | (U64(s->id) << 32)); +} + +#define NEED_TO_COPY 1 + +static int write_ptr(struct capn_segment *s, char *d, capn_ptr p) { + /* note p.seg can be NULL if its a ptr to static data */ + char *pdata = p.data - 8*p.is_composite_list; + + if (p.type == CAPN_NULL || (p.type == CAPN_STRUCT && p.datasz == 0 && p.ptrs == 0)) { + write_ptr_tag(d, p, 0); + return 0; + + } else if (!p.seg || p.seg->capn != s->capn || p.is_list_member) { + return NEED_TO_COPY; + + } else if (p.seg == s) { + write_ptr_tag(d, p, pdata - d - 8); + return 0; + + } else if (p.has_ptr_tag) { + /* By lucky chance, the data has a tag in front + * of it. This happens when new_object had to move + * the data to a new segment. */ + write_far_ptr(d, p.seg, pdata-8); + return 0; + + } else if (p.seg->len + 8 <= p.seg->cap) { + /* The target segment has enough room for tag */ + char *t = p.seg->data + p.seg->len; + write_ptr_tag(t, p, pdata - t - 8); + write_far_ptr(d, p.seg, t); + p.seg->len += 8; + return 0; + + } else { + /* have to allocate room for a double far + * pointer */ + char *t; + + if (s->len + 16 <= s->cap) { + /* Try and allocate in the src segment + * first. This should improve lookup on + * read. */ + t = s->data + s->len; + s->len += 16; + } else { + t = new_data(s->capn, 16, &s); + if (!t) return -1; + } + + write_far_ptr(t, p.seg, pdata); + write_ptr_tag(t+8, p, 0); + write_double_far(d, s, t); + return 0; + } +} + +struct copy { + struct capn_tree hdr; + struct capn_ptr to, from; + char *fbegin, *fend; +}; + +static capn_ptr new_clone(struct capn_segment *s, capn_ptr p) { + switch (p.type) { + case CAPN_STRUCT: + return capn_new_struct(s, p.datasz, p.ptrs); + case CAPN_PTR_LIST: + return capn_new_ptr_list(s, p.len); + case CAPN_BIT_LIST: + return capn_new_list1(s, p.len).p; + case CAPN_LIST: + return capn_new_list(s, p.len, p.datasz, p.ptrs); + default: + return p; + } +} + +static int is_ptr_equal(const struct capn_ptr *a, const struct capn_ptr *b) { + return a->data == b->data + && a->type == b->type + && a->len == b->len + && a->datasz == b->datasz + && a->ptrs == b->ptrs; +} + +static int data_size(struct capn_ptr p) { + switch (p.type) { + case CAPN_BIT_LIST: + return p.datasz; + case CAPN_PTR_LIST: + return p.len*8; + case CAPN_STRUCT: + return p.datasz + 8*p.ptrs; + case CAPN_LIST: + return p.len * (p.datasz + 8*p.ptrs) + 8*p.is_composite_list; + default: + return 0; + } +} + +static int copy_ptr(struct capn_segment *seg, char *data, struct capn_ptr *t, struct capn_ptr *f, int *dep) { + struct capn *c = seg->capn; + struct copy *cp = NULL; + struct capn_tree **xcp; + char *fbegin = f->data - 8*f->is_composite_list; + char *fend = fbegin + data_size(*f); + int zero_sized = (fend == fbegin); + + /* We always copy list members as it would otherwise be an + * overlapped pointer (the data is owned by the enclosing list). + * We do not bother with the overlapped lookup for zero sized + * structures/lists as they never overlap. Nor do we add them to + * the copy list as there is no data to be shared by multiple + * pointers. + */ + + xcp = &c->copy; + while (*xcp && !zero_sized) { + cp = (struct copy*) *xcp; + if (fend <= cp->fbegin) { + xcp = &cp->hdr.link[0]; + } else if (cp->fend <= fbegin) { + xcp = &cp->hdr.link[1]; + } else if (is_ptr_equal(f, &cp->from)) { + /* we already have a copy so just point to that */ + return write_ptr(seg, data, cp->to); + } else { + /* pointer to overlapped data */ + return -1; + } + } + + /* no copy found - have to create a new copy */ + *t = new_clone(seg, *f); + + if (write_ptr(seg, data, *t)) + return -1; + + /* add the copy to the copy tree so we can look for overlapping + * source pointers and handle recursive structures */ + if (!zero_sized) { + struct copy *n; + struct capn_segment *cs = c->copylist; + + /* need to allocate a struct copy */ + if (!cs || cs->len + (int)sizeof(*n) > cs->cap) { + cs = c->create_local ? c->create_local(c->user, sizeof(*n)) : NULL; + if (!cs) { + /* can't allocate a copy structure */ + return -1; + } + cs->next = c->copylist; + c->copylist = cs; + } + + n = (struct copy*) (cs->data + cs->len); + cs->len += sizeof(*n); + + n->from = *f; + n->to = *t; + n->fbegin = fbegin; + n->fend = fend; + + *xcp = &n->hdr; + n->hdr.parent = &cp->hdr; + + c->copy = capn_tree_insert(c->copy, &n->hdr); + } + + /* minimize the number of types the main copy routine has to + * deal with to just CAPN_LIST and CAPN_PTR_LIST. ptr list only + * needs t->type, t->len, t->data, t->seg, f->data, f->seg to + * be valid */ + switch (t->type) { + case CAPN_STRUCT: + if (t->datasz) { + memcpy(t->data, f->data, t->datasz); + t->data += t->datasz; + f->data += t->datasz; + } + if (t->ptrs) { + t->type = CAPN_PTR_LIST; + t->len = t->ptrs; + (*dep)++; + } + return 0; + + case CAPN_BIT_LIST: + memcpy(t->data, f->data, t->datasz); + return 0; + + case CAPN_LIST: + if (!t->len) { + /* empty list - nothing to copy */ + } else if (t->ptrs && t->datasz) { + (*dep)++; + } else if (t->datasz) { + memcpy(t->data, f->data, t->len * t->datasz); + } else if (t->ptrs) { + t->type = CAPN_PTR_LIST; + t->len *= t->ptrs; + (*dep)++; + } + return 0; + + case CAPN_PTR_LIST: + if (t->len) { + (*dep)++; + } + return 0; + + default: + return -1; + } +} + +static void copy_list_member(capn_ptr* t, capn_ptr *f, int *dep) { + /* copy struct data */ + int sz = min(t->datasz, f->datasz); + memcpy(t->data, f->data, sz); + memset(t->data + sz, 0, t->datasz - sz); + t->data += t->datasz; + f->data += f->datasz; + + /* reset excess pointers */ + sz = min(t->ptrs, f->ptrs); + memset(t->data + sz, 0, 8*(t->ptrs - sz)); + + /* create a pointer list for the main loop to copy */ + if (t->ptrs) { + t->type = CAPN_PTR_LIST; + t->len = t->ptrs; + (*dep)++; + } +} + +#define MAX_COPY_DEPTH 32 + +/* TODO: handle CAPN_BIT_LIST and setting from an inner bit list member */ +int capn_setp(capn_ptr p, int off, capn_ptr tgt) { + struct capn_ptr to[MAX_COPY_DEPTH], from[MAX_COPY_DEPTH]; + char *data; + int err, dep = 0; + + capn_resolve(&p); + + if (tgt.type == CAPN_FAR_POINTER && tgt.seg->capn == p.seg->capn) { + uint64_t val = capn_flip64(*(uint64_t*) tgt.data); + if ((val & 3) == FAR_PTR) { + *(uint64_t*) p.data = *(uint64_t*) tgt.data; + return 0; + } + } + + capn_resolve(&tgt); + + switch (p.type) { + case CAPN_LIST: + if (off >= p.len || tgt.type != CAPN_STRUCT) + return -1; + + to[0] = p; + to[0].data += off * (p.datasz + 8*p.ptrs); + from[0] = tgt; + copy_list_member(to, from, &dep); + break; + + case CAPN_PTR_LIST: + if (off >= p.len) + return -1; + data = p.data + 8*off; + goto copy_ptr; + + case CAPN_STRUCT: + if (off >= p.ptrs) + return -1; + data = p.data + p.datasz + 8*off; + goto copy_ptr; + + copy_ptr: + err = write_ptr(p.seg, data, tgt); + if (err != NEED_TO_COPY) + return err; + + /* Depth first copy the source whilst using a pointer stack to + * maintain the ptr to set and size left to copy at each level. + * We also maintain a rbtree (capn->copy) of the copies indexed + * by the source data. This way we can detect overlapped + * pointers in the source (and bail) and recursive structures + * (and point to the previous copy). + */ + + from[0] = tgt; + if (copy_ptr(p.seg, data, to, from, &dep)) + return -1; + break; + + default: + return -1; + } + + while (dep) { + struct capn_ptr *tc = &to[dep-1], *tn = &to[dep]; + struct capn_ptr *fc = &from[dep-1], *fn = &from[dep]; + + if (dep+1 == MAX_COPY_DEPTH) { + return -1; + } + + if (!tc->len) { + dep--; + continue; + } + + if (tc->type == CAPN_LIST) { + *fn = capn_getp(*fc, 0, 1); + *tn = capn_getp(*tc, 0, 1); + + copy_list_member(tn, fn, &dep); + + fc->data += fc->datasz + 8*fc->ptrs; + tc->data += tc->datasz + 8*tc->ptrs; + tc->len--; + + } else { /* CAPN_PTR_LIST */ + *fn = read_ptr(fc->seg, fc->data); + + if (fn->type && copy_ptr(tc->seg, tc->data, tn, fn, &dep)) + return -1; + + fc->data += 8; + tc->data += 8; + tc->len--; + } + } + + return 0; +} + +/* TODO: handle CAPN_LIST, CAPN_PTR_LIST for bit lists */ + +int capn_get1(capn_list1 l, int off) { + return l.p.type == CAPN_BIT_LIST + && off < l.p.len + && (l.p.data[off/8] & (1 << (off%8))) != 0; +} + +int capn_set1(capn_list1 l, int off, int val) { + if (l.p.type != CAPN_BIT_LIST || off >= l.p.len) + return -1; + if (val) { + l.p.data[off/8] |= 1 << (off%8); + } else { + l.p.data[off/8] &= ~(1 << (off%8)); + } + return 0; +} + +int capn_getv1(capn_list1 l, int off, uint8_t *data, int sz) { + /* Note we only support aligned reads */ + int bsz; + capn_ptr p; + capn_resolve(&l.p); + p = l.p; + if (p.type != CAPN_BIT_LIST || (off & 7) != 0) + return -1; + + bsz = (sz + 7) / 8; + off /= 8; + + if (off + sz > p.datasz) { + memcpy(data, p.data + off, p.datasz - off); + return p.len - off*8; + } else { + memcpy(data, p.data + off, bsz); + return sz; + } +} + +int capn_setv1(capn_list1 l, int off, const uint8_t *data, int sz) { + /* Note we only support aligned writes */ + int bsz; + capn_ptr p = l.p; + if (p.type != CAPN_BIT_LIST || (off & 7) != 0) + return -1; + + bsz = (sz + 7) / 8; + off /= 8; + + if (off + sz > p.datasz) { + memcpy(p.data + off, data, p.datasz - off); + return p.len - off*8; + } else { + memcpy(p.data + off, data, bsz); + return sz; + } +} + +/* pull out whether we add a tag or not as a define so the unit test can + * test double far pointers by not creating tags */ +#ifndef ADD_TAG +#define ADD_TAG 1 +#endif + +static void new_object(capn_ptr *p, int bytes) { + struct capn_segment *s = p->seg; + + if (!s) { + memset(p, 0, sizeof(*p)); + return; + } + + /* pointer needs to be initialised to get a valid offset on write */ + if (!bytes) { + p->data = s->data + s->len; + return; + } + + /* all allocations are 8 byte aligned */ + bytes = (bytes + 7) & ~7; + + if (s->len + bytes <= s->cap) { + p->data = s->data + s->len; + s->len += bytes; + return; + } + + /* add a tag whenever we switch segments so that write_ptr can + * use it */ + p->data = new_data(s->capn, bytes + ADD_TAG*8, &p->seg); + if (!p->data) { + memset(p, 0, sizeof(*p)); + return; + } + + if (ADD_TAG) { + write_ptr_tag(p->data, *p, 0); + p->data += 8; + p->has_ptr_tag = 1; + } +} + +capn_ptr capn_root(struct capn *c) { + capn_ptr r = {CAPN_PTR_LIST}; + r.seg = lookup_segment(c, NULL, 0); + r.data = r.seg ? r.seg->data : new_data(c, 8, &r.seg); + r.len = 1; + + if (!r.seg || r.seg->cap < 8) { + memset(&r, 0, sizeof(r)); + } else if (r.seg->len < 8) { + r.seg->len = 8; + } + + return r; +} + +capn_ptr capn_new_struct(struct capn_segment *seg, int datasz, int ptrs) { + capn_ptr p = {CAPN_STRUCT}; + p.seg = seg; + p.datasz = (datasz + 7) & ~7; + p.ptrs = ptrs; + new_object(&p, p.datasz + 8*p.ptrs); + return p; +} + +capn_ptr capn_new_list(struct capn_segment *seg, int sz, int datasz, int ptrs) { + capn_ptr p = {CAPN_LIST}; + p.seg = seg; + p.len = sz; + + if (ptrs || datasz > 8) { + p.is_composite_list = 1; + p.datasz = (datasz + 7) & ~7; + p.ptrs = ptrs; + new_object(&p, p.len * (p.datasz + 8*p.ptrs) + 8); + if (p.data) { + uint64_t hdr = STRUCT_PTR | (U64(p.len) << 2) | (U64(p.datasz/8) << 32) | (U64(ptrs) << 48); + *(uint64_t*) p.data = capn_flip64(hdr); + p.data += 8; + } + } else if (datasz > 4) { + p.datasz = 8; + new_object(&p, p.len * 8); + } else if (datasz > 2) { + p.datasz = 4; + new_object(&p, p.len * 4); + } else { + p.datasz = datasz; + new_object(&p, p.len * datasz); + } + + return p; +} + +capn_list1 capn_new_list1(struct capn_segment *seg, int sz) { + capn_list1 l = {{CAPN_BIT_LIST}}; + l.p.seg = seg; + l.p.datasz = (sz+7)/8; + l.p.len = sz; + new_object(&l.p, l.p.datasz); + return l; +} + +capn_ptr capn_new_ptr_list(struct capn_segment *seg, int sz) { + capn_ptr p = {CAPN_PTR_LIST}; + p.seg = seg; + p.len = sz; + p.ptrs = 0; + p.datasz = 0; + new_object(&p, sz*8); + return p; +} + +capn_ptr capn_new_string(struct capn_segment *seg, const char *str, ssize_t sz) { + capn_ptr p = {CAPN_LIST}; + p.seg = seg; + p.len = ((sz >= 0) ? (size_t)sz : strlen(str)) + 1; + p.datasz = 1; + new_object(&p, p.len); + if (p.data) { + memcpy(p.data, str, p.len - 1); + p.data[p.len - 1] = '\0'; + } + return p; +} + +capn_text capn_get_text(capn_ptr p, int off, capn_text def) { + capn_ptr m = capn_getp(p, off, 1); + capn_text ret = def; + if (m.type == CAPN_LIST && m.datasz == 1 && m.len && m.data[m.len - 1] == 0) { + ret.seg = m.seg; + ret.str = m.data; + ret.len = m.len - 1; + } + return ret; +} + +int capn_set_text(capn_ptr p, int off, capn_text tgt) { + capn_ptr m = {CAPN_NULL}; + if (tgt.seg) { + m.type = CAPN_LIST; + m.seg = tgt.seg; + m.data = (char*)tgt.str; + m.len = tgt.len + 1; + m.datasz = 1; + } else if (tgt.str) { + m = capn_new_string(p.seg, tgt.str, tgt.len); + } + return capn_setp(p, off, m); +} + +capn_data capn_get_data(capn_ptr p, int off) { + capn_data ret; + ret.p = capn_getp(p, off, 1); + if (ret.p.type != CAPN_LIST || ret.p.datasz != 1) { + memset(&ret, 0, sizeof(ret)); + } + return ret; +} + +#define SZ 8 +#include "capn-list.inc" +#undef SZ + +#define SZ 16 +#include "capn-list.inc" +#undef SZ + +#define SZ 32 +#include "capn-list.inc" +#undef SZ + +#define SZ 64 +#include "capn-list.inc" +#undef SZ |