1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
#include "arch.h"
#include "driver/neopixel.h"
#include "driver/stdout.h"
#include <util/delay.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#define NUM_PIXELS 27
Adafruit_NeoPixel np(NUM_PIXELS, GPIO::pb0, NEO_GRB+NEO_KHZ800);
class Blinkencat {
private:
uint8_t btn_debounce;
public:
enum Mode : uint8_t {
OFF = 0,
RGBWHEEL_FAST,
RGBWHEEL_SLOW,
RGBFADE_FAST,
RGBFADE_SLOW,
BRIGHTRGBWHEEL_FAST,
BRIGHTRGBWHEEL_SLOW,
BRIGHTRGBFADE_FAST,
BRIGHTRGBFADE_SLOW,
COLD_WHITE,
STROBE,
COLOR_STROBE,
MODE_ENUM_MAX
};
Mode mode;
void setup(void);
void next_mode(void);
void debounce_done(void);
void debounce_start(void);
void check_battery(void);
void sleep(void);
void idle(void);
void loop(void);
Blinkencat() : btn_debounce(0), mode(OFF) {}
};
void Blinkencat::setup(void)
{
np.setup();
gpio.input(GPIO::pb1, 0); // LED GND (LED has no resistor, do not set to output!)
gpio.input(GPIO::pd3, 1); // Button A
gpio.enable_int(GPIO::pd3);
// One ADC conversion per four seconds
TCCR1A = 0;
TCCR1B = _BV(CS12) | _BV(CS10);
// Measure internal 1.1V bandgap using VCC as reference on each Timer 1 overflow
ADMUX = _BV(REFS0) | 0x0e;
ADCSRB = _BV(ADTS2) | _BV(ADTS1);
ADCSRA = _BV(ADEN) | _BV(ADATE) | _BV(ADPS2) | _BV(ADPS1);
}
void Blinkencat::idle(void)
{
SMCR = _BV(SE);
asm("sleep");
SMCR = 0;
}
void Blinkencat::sleep(void)
{
SMCR = _BV(SM1) | _BV(SE);
asm("sleep");
SMCR = 0;
}
void Blinkencat::debounce_start(void)
{
if (!btn_debounce) {
btn_debounce = 1;
wdt_reset();
WDTCSR = _BV(WDE) | _BV(WDCE);
WDTCSR = _BV(WDIE) | _BV(WDP2);
}
}
void Blinkencat::debounce_done(void)
{
btn_debounce = 0;
wdt_disable();
// long press? -> turn off
if (!gpio.read(GPIO::pd3)) {
mode = OFF;
}
}
void Blinkencat::next_mode(void)
{
if (!btn_debounce) {
mode = (Mode)((mode + 1) % MODE_ENUM_MAX);
}
}
void Blinkencat::check_battery(void)
{
if (ADCSRA & _BV(ADIF)) {
uint8_t adcr_l = ADCL;
uint8_t adcr_h = ADCH;
uint16_t adcr = adcr_l + (adcr_h << 8);
uint16_t vcc = 1100L * 1023 / adcr;
TIFR1 |= _BV(TOV1);
ADCSRA |= _BV(ADIF);
//kout << "VCC is " << vcc << endl;
// 3.1 V under load ~~ 3.5 V idle
if (vcc < 3100) {
for (uint8_t i = 0; i < 5; i++) {
for (uint8_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(0, 0, 0));
}
np.show();
_delay_ms(400);
for (uint8_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(127 * ((i % 7) == 0), 0, 0));
}
np.show();
_delay_ms(400);
}
for (uint8_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(0, 0, 0));
}
np.show();
sleep();
}
/*
* Both battery and Arduino Nano are connected to the output of the
* TP4056 LiIon charge controller, so it decides on the battery charge
* status based on their cumulative current draw. A sufficiently high
* Arduino Nano (WS2812B) current will cause it to charge indefinitely,
* shortening the LiIon battery's life span and increasing fire risk.
*
* To avoid this, we disable all LEDs when a charger is connected.
* This is preceeded by a 5x green flash to indicate that it is
* intended behaviour.
*
* VCC > 4.22 V indicates that the battery is charging.
* (float voltage without charger rarely exceeds 4.2 V)
*/
if (vcc > 4220) {
for (uint8_t i = 0; i < 5; i++) {
for (uint8_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(0, 0, 0));
}
np.show();
_delay_ms(400);
for (uint8_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(0, 200 * ((i % 7) == 0), 0));
}
np.show();
_delay_ms(400);
}
for (uint8_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(0, 0, 0));
}
np.show();
sleep();
}
}
}
void Blinkencat::loop(void)
{
static uint16_t rgbwheel_offset = 0;
static uint16_t rgbfade_hsv = 0;
static uint8_t strobe_on = 0;
switch (mode) {
case OFF:
// the mode may have been set by an ISR, which may in turn have
// been handled immediately after an np.show() call. So we must
// observe the 300us idle time mandated by WS2812.
_delay_ms(1);
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(0, 0, 0));
}
np.show();
sleep();
break;
case RGBWHEEL_FAST:
case RGBWHEEL_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
uint16_t hsv = (i * 252 + rgbwheel_offset) % 6553;
np.setPixelColor((NUM_PIXELS-1) - i, np.gamma32(np.ColorHSV(hsv * 10, 255, 127)));
}
rgbwheel_offset = (rgbwheel_offset + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == RGBWHEEL_SLOW) {
_delay_ms(9);
}
break;
case RGBFADE_FAST:
case RGBFADE_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.ColorHSV(rgbfade_hsv * 10, 255, 63));
}
rgbfade_hsv = (rgbfade_hsv + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == RGBFADE_SLOW) {
_delay_ms(99);
}
break;
case BRIGHTRGBWHEEL_FAST:
case BRIGHTRGBWHEEL_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
uint16_t hsv = (i * 252 + rgbwheel_offset) % 6553;
np.setPixelColor((NUM_PIXELS-1) - i, np.gamma32(np.ColorHSV(hsv * 10)));
}
rgbwheel_offset = (rgbwheel_offset + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == BRIGHTRGBWHEEL_SLOW) {
_delay_ms(9);
}
break;
case BRIGHTRGBFADE_FAST:
case BRIGHTRGBFADE_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.ColorHSV(rgbfade_hsv * 10));
}
rgbfade_hsv = (rgbfade_hsv + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == BRIGHTRGBFADE_SLOW) {
_delay_ms(99);
}
break;
case COLD_WHITE:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(127, 127, 127));
}
np.show();
sleep();
break;
case STROBE:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(strobe_on, strobe_on, strobe_on));
}
np.show();
strobe_on = 127 - strobe_on;
_delay_ms(40);
break;
case COLOR_STROBE:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
if (strobe_on) {
np.setPixelColor(i, np.ColorHSV(rgbfade_hsv * 10));
} else {
np.setPixelColor(i, np.Color(0, 0, 0));
}
}
rgbfade_hsv = (rgbfade_hsv + 50) % 6553;
np.show();
strobe_on = 127 - strobe_on;
_delay_ms(40);
break;
}
}
Blinkencat blinkencat;
int main(void)
{
arch.setup();
gpio.setup();
kout.setup();
blinkencat.setup();
while (1) {
blinkencat.check_battery();
blinkencat.loop();
}
return 0;
}
ISR(WDT_vect)
{
blinkencat.debounce_done();
}
ISR(PCINT2_vect)
{
if (!gpio.read(GPIO::pd3)) {
blinkencat.next_mode();
}
blinkencat.debounce_start();
}
|