1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
#include "arch.h"
#include "driver/neopixel.h"
#include "driver/stdin.h"
#include "driver/stdout.h"
#include <util/delay.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#define NUM_PIXELS 66
Adafruit_NeoPixel np(NUM_PIXELS, GPIO::pb0, NEO_GRB+NEO_KHZ800);
class Blinkencat {
public:
enum Mode : uint8_t {
OFF = 0,
RGBWHEEL_FAST,
RGBWHEEL_SLOW,
RGBFADE_FAST,
RGBFADE_SLOW,
BRIGHTRGBWHEEL_FAST,
BRIGHTRGBWHEEL_SLOW,
BRIGHTRGBFADE_FAST,
BRIGHTRGBFADE_SLOW,
COLD_WHITE,
STROBE,
COLOR_STROBE,
COLOR_RGB,
MODE_ENUM_MAX
};
Mode mode;
uint8_t red, green, blue;
void setup(void);
void next_mode(void);
void idle(void);
void loop(void);
Blinkencat() : mode(OFF) {}
};
void Blinkencat::setup(void)
{
np.setup();
gpio.input(GPIO::pb1, 0);
gpio.input(GPIO::pd3, 1);
gpio.enable_int(GPIO::pd3);
// One ADC conversion per four seconds
TCCR1A = 0;
TCCR1B = _BV(CS12) | _BV(CS10);
// Measure internal 1.1V bandgap using VCC as reference on each Timer 1 overflow
ADMUX = _BV(REFS0) | 0x0e;
ADCSRB = _BV(ADTS2) | _BV(ADTS1);
ADCSRA = _BV(ADEN) | _BV(ADATE) | _BV(ADPS2) | _BV(ADPS1);
}
void Blinkencat::idle(void)
{
SMCR = _BV(SE);
asm("sleep");
SMCR = 0;
}
void Blinkencat::next_mode(void)
{
mode = (Mode)((mode + 1) % MODE_ENUM_MAX);
}
void Blinkencat::loop(void)
{
static uint16_t rgbwheel_offset = 0;
static uint16_t rgbfade_hsv = 0;
static uint8_t strobe_on = 0;
/*
// not working due to bad logic levels
if (gpio.read(GPIO::pb1)) {
// Arduino and WS2812 strip are connected in parallel with the battery,
// which will significantly confuse the charging circuit when the
// strip is active while charging. So we make sure that it isn't.
mode = OFF;
}
*/
switch (mode) {
case OFF:
// the mode may have been set by an ISR, which may in turn have
// been handled immediately after an np.show() call. So we must
// observe the 300us idle time mandated by WS2812.
_delay_ms(1);
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(0, 0, 0));
}
np.show();
idle();
break;
case RGBWHEEL_FAST:
case RGBWHEEL_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
uint16_t hsv = (i * 252 + rgbwheel_offset) % 6553;
np.setPixelColor((NUM_PIXELS-1) - i, np.gamma32(np.ColorHSV(hsv * 10, 255, 127)));
}
rgbwheel_offset = (rgbwheel_offset + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == RGBWHEEL_SLOW) {
_delay_ms(9);
}
break;
case RGBFADE_FAST:
case RGBFADE_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.ColorHSV(rgbfade_hsv * 10, 255, 63));
}
rgbfade_hsv = (rgbfade_hsv + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == RGBFADE_SLOW) {
_delay_ms(99);
}
break;
case BRIGHTRGBWHEEL_FAST:
case BRIGHTRGBWHEEL_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
uint16_t hsv = (i * 252 + rgbwheel_offset) % 6553;
np.setPixelColor((NUM_PIXELS-1) - i, np.gamma32(np.ColorHSV(hsv * 10)));
}
rgbwheel_offset = (rgbwheel_offset + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == BRIGHTRGBWHEEL_SLOW) {
_delay_ms(9);
}
break;
case BRIGHTRGBFADE_FAST:
case BRIGHTRGBFADE_SLOW:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.ColorHSV(rgbfade_hsv * 10));
}
rgbfade_hsv = (rgbfade_hsv + 10) % 6553;
np.show();
_delay_ms(1);
if (mode == BRIGHTRGBFADE_SLOW) {
_delay_ms(99);
}
break;
case COLD_WHITE:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(127, 127, 127));
}
np.show();
idle();
break;
case STROBE:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(strobe_on, strobe_on, strobe_on));
}
np.show();
strobe_on = 127 - strobe_on;
_delay_ms(40);
break;
case COLOR_STROBE:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
if (strobe_on) {
np.setPixelColor(i, np.ColorHSV(rgbfade_hsv * 10));
} else {
np.setPixelColor(i, np.Color(0, 0, 0));
}
}
rgbfade_hsv = (rgbfade_hsv + 50) % 6553;
np.show();
strobe_on = 127 - strobe_on;
_delay_ms(40);
break;
case COLOR_RGB:
for (uint16_t i = 0; i < NUM_PIXELS; i++) {
np.setPixelColor(i, np.Color(red, green, blue));
}
np.show();
idle();
break;
}
}
Blinkencat blinkencat;
int main(void)
{
char buf[3];
unsigned char buf_pos = sizeof(buf);
Blinkencat::Mode target_mode = blinkencat.OFF;
arch.setup();
gpio.setup();
kout.setup();
kin.setup();
blinkencat.setup();
while (1) {
kout << "loop - mode is " << blinkencat.mode << endl;
blinkencat.loop();
while (kin.hasKey()) {
char key = kin.getKey();
if (buf_pos < sizeof(buf)) {
buf[buf_pos] = key;
buf_pos++;
if (buf_pos == sizeof(buf)) {
blinkencat.red = buf[0];
blinkencat.green = buf[1];
blinkencat.blue = buf[2];
blinkencat.mode = target_mode;
}
}
else if ((key >= '0') && (key < '0' + blinkencat.MODE_ENUM_MAX)) {
blinkencat.mode = (Blinkencat::Mode)(key - '0');
}
else if (key == 'c') {
buf_pos = 0;
target_mode = blinkencat.COLOR_RGB;
}
}
}
return 0;
}
|