blob: b475c5f2beb5ba950beefcd55973d5e70200847d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
#include "arch.h"
#include <msp430.h>
void Arch::setup(void)
{
WDTCTL = WDTPW | WDTHOLD;
PJSEL0 = BIT4 | BIT5;
PM5CTL0 &= ~LOCKLPM5;
/*
* Note: arch drivers assume SMCLK freq == F_CPU
*/
#if F_CPU == 16000000UL
FRCTL0 = FWPW; // unlock FRAM Control
FRCTL0_L = 0x10; // one wait state before FRAM access (required for 8MHz < F_CPU <= 16 MHz)
FRCTL0_H = 0xff; // lock FRAM control by writing an invalid password
// 16MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCORSEL | DCOFSEL_4;
#elif F_CPU == 8000000UL
// 8MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCOFSEL_6;
#elif F_CPU == 4000000UL
// 8MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCOFSEL_3;
#elif F_CPU == 1000000UL
// 8MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCOFSEL_0;
#else
#error Unsupported F_CPU
#endif
#ifdef WITH_LOOP
CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
#else
CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;
#endif
CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1;
CSCTL0_H = 0;
#ifdef WITH_LOOP
// enable LXFT for RTC
CSCTL0_H = CSKEY >> 8;
CSCTL4 &= ~LFXTOFF;
while (SFRIFG1 & OFIFG) {
CSCTL5 &= ~LFXTOFFG;
SFRIFG1 &= ~OFIFG;
}
CSCTL0_H = 0;
__delay_cycles(1000000);
#endif
#ifdef TIMER_US
// 16MHz/16 -> ~1MHz timer
TA0CTL = TASSEL__SMCLK | ID__8 | MC__CONTINUOUS;
TA0EX0 = 1;
TA0CTL |= TACLR;
#endif
#if defined(WITH_LOOP) || defined(TIMER_S)
// 1s per wakeup for loop
TA1CTL = TASSEL__ACLK | ID__8 | MC__UP;
TA1EX0 = 0;
TA1CCR0 = 4096;
TA1CTL |= TACLR | TAIE;
#endif
#ifdef TIMER_CYCLES
TA2CTL = TASSEL__SMCLK | ID__1 | MC__CONTINUOUS;
TA2EX0 = 0;
TA2CTL |= TACLR;
#endif
//P1OUT = 0;
//P4OUT = 0;
}
#ifdef WITH_WAKEUP
extern void wakeup();
#endif
#if defined(WITH_LOOP)
extern void loop();
volatile char run_loop = 0;
#endif
void Arch::delay_us(unsigned char const us)
{
for (int i = 0; i < us/10; i++) {
__delay_cycles(160);
}
}
void Arch::delay_ms(unsigned char const ms)
{
for (int i = 0; i < ms; i++) {
__delay_cycles(16000);
}
}
void Arch::idle_loop(void)
{
while (1) {
asm volatile("nop");
__bis_SR_register(GIE | LPM2_bits);
asm volatile("nop");
__dint();
#if defined(WITH_LOOP)
if (run_loop) {
loop();
run_loop = 0;
}
#endif
#ifdef WITH_WAKEUP
wakeup();
#endif
}
}
void Arch::idle(void)
{
asm volatile("nop");
__bis_SR_register(GIE | LPM2_bits);
asm volatile("nop");
__dint();
#ifdef WITH_WAKEUP
wakeup();
#endif
}
Arch arch;
#if defined(WITH_LOOP) || defined(TIMER_S)
#include "driver/uptime.h"
__attribute__((interrupt(TIMER1_A1_VECTOR))) __attribute__((wakeup)) void handle_timer1_overflow()
{
if (TA1IV == 0x0e) {
#ifdef WITH_LOOP
run_loop = 1;
#endif
#ifdef TIMER_S
uptime.tick_s();
#endif
}
}
#endif
/*
void uart_setup(void)
{
UCA0CTLW0 = UCSWRST | UCSSEL__SMCLK;
UCA0MCTLW = UCOS16 | (2<<5) | 0xD600;
UCA0BR0 = 104;
UCA0IRCTL = 0;
UCA0ABCTL = 0;
P2SEL0 &= ~(BIT0 | BIT1);
P2SEL1 |= BIT0 | BIT1;
P2DIR |= BIT0;
UCA0CTLW0 &= ~UCSWRST;
UCA0IE |= UCRXIE;
}
void uart_putchar(char c)
{
while (!(UCA0IFG & UCTXIFG));
UCA0TXBUF = c;
if (c == '\n')
uart_putchar('\r');
}
__attribute__((interrupt(USCI_A0_VECTOR))) void USCI_A0_ISR(void)
{
static char prompt[64];
static unsigned int prompt_pos = 0;
char buf;
unsigned char raw_p_pos, parse_p_pos;
char parsed_prompt[64];
unsigned char argc = 0;
char *argv[32];
if (UCA0IFG & UCRXIFG) {
buf = UCA0RXBUF;
if (buf == '\r') {
uart_putchar('\n');
if (prompt_pos > 0) {
parse_p_pos = 0;
argv[0] = parsed_prompt;
for (raw_p_pos = 0; raw_p_pos < prompt_pos; raw_p_pos++) {
if (prompt[raw_p_pos] != ' ') {
parsed_prompt[parse_p_pos++] = prompt[raw_p_pos];
} else if ((raw_p_pos > 0) && (prompt[raw_p_pos-1] != ' ')) {
argc++;
parsed_prompt[parse_p_pos++] = 0;
argv[argc] = parsed_prompt + parse_p_pos;
}
}
if (parse_p_pos < 64)
parsed_prompt[parse_p_pos] = 0;
else
parsed_prompt[63] = 0;
check_command(argc, argv);
prompt_pos = 0;
*prompt = 0;
}
uart_puts(COL_YELLOW "msp430fr5969" COL_GREEN " > " COL_RESET);
} else if (buf == '\f') {
uart_puts("\n" COL_YELLOW "msp430fr5969" COL_GREEN " > " COL_RESET);
uart_nputs(prompt, prompt_pos);
} else if (buf == 0x7f) {
if (prompt_pos) {
prompt_pos--;
uart_puts("\e[D \e[D");
}
} else if (buf == 0x15) { // ^U
for ( ; prompt_pos > 0; prompt_pos-- )
uart_puts("\e[D \e[D");
*prompt = 0;
} else if (buf == 0x17) { // ^W
for ( ; (prompt_pos > 0) && (prompt[prompt_pos] != ' '); prompt_pos-- )
uart_puts("\e[D \e[D");
for ( ; (prompt_pos > 0) && (prompt[prompt_pos-1] == ' '); prompt_pos-- )
uart_puts("\e[D \e[D");
prompt[prompt_pos] = 0;
} else if (buf >= ' ') {
if (prompt_pos < sizeof(prompt)-1) {
prompt[prompt_pos++] = buf;
uart_putchar(buf);
}
}
}
}
*/
|