summaryrefslogtreecommitdiff
path: root/src/driver/bme680.cc
blob: 194aa5c27527f8aece7d3db5ddd13e346255bcd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/**\mainpage
 * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
 *
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * Neither the name of the copyright holder nor the names of the
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
 * OR CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
 *
 * The information provided is believed to be accurate and reliable.
 * The copyright holder assumes no responsibility
 * for the consequences of use
 * of such information nor for any infringement of patents or
 * other rights of third parties which may result from its use.
 * No license is granted by implication or otherwise under any patent or
 * patent rights of the copyright holder.
 *
 * File		bme680.c
 * @date	19 Jun 2018
 * @version	3.5.9
 *
 */

/*! @file bme680.c
 @brief Sensor driver for BME680 sensor */
#include "driver/bme680.h"


/****************** Global Function Definitions *******************************/
/*!
 *@brief This API is the entry point.
 *It reads the chip-id and calibration data from the sensor.
 */
int8_t BME680::init()
{
	int8_t rslt;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		/* Soft reset to restore it to default values*/
		rslt = softReset();
		if (rslt == BME680_OK) {
			rslt = getRegs(BME680_CHIP_ID_ADDR, &chip_id, 1);
			if (rslt == BME680_OK) {
				if (chip_id == BME680_CHIP_ID) {
					/* Get the Calibration data */
					rslt = getCalibData();
				} else {
					rslt = BME680_E_DEV_NOT_FOUND;
				}
			}
		}
	}

	return rslt;
}

/*!
 * @brief This API reads the data from the given register address of the sensor.
 */
int8_t BME680::getRegs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
{
	int8_t rslt;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		if (intf == BME680_SPI_INTF) {
			/* Set the memory page */
			rslt = setMemPage(reg_addr);
			if (rslt == BME680_OK)
				reg_addr = reg_addr | BME680_SPI_RD_MSK;
		}
		com_rslt = read(dev_id, reg_addr, reg_data, len);
		if (com_rslt != 0)
			rslt = BME680_E_COM_FAIL;
	}

	return rslt;
}

/*!
 * @brief This API writes the given data to the register address
 * of the sensor.
 */
int8_t BME680::setRegs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len)
{
	int8_t rslt;
	/* Length of the temporary buffer is 2*(length of register)*/
	uint8_t tmp_buff[BME680_TMP_BUFFER_LENGTH] = { 0 };
	uint16_t index;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) {
			/* Interleave the 2 arrays */
			for (index = 0; index < len; index++) {
				if (intf == BME680_SPI_INTF) {
					/* Set the memory page */
					rslt = setMemPage(reg_addr[index]);
					tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK;
				} else {
					tmp_buff[(2 * index)] = reg_addr[index];
				}
				tmp_buff[(2 * index) + 1] = reg_data[index];
			}
			/* Write the interleaved array */
			if (rslt == BME680_OK) {
				com_rslt = write(dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1);
				if (com_rslt != 0)
					rslt = BME680_E_COM_FAIL;
			}
		} else {
			rslt = BME680_E_INVALID_LENGTH;
		}
	}

	return rslt;
}

/*!
 * @brief This API performs the soft reset of the sensor.
 */
int8_t BME680::softReset()
{
	int8_t rslt;
	uint8_t reg_addr = BME680_SOFT_RESET_ADDR;
	/* 0xb6 is the soft reset command */
	uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		if (intf == BME680_SPI_INTF)
			rslt = getMemPage();

		/* Reset the device */
		if (rslt == BME680_OK) {
			rslt = setRegs(&reg_addr, &soft_rst_cmd, 1);
			/* Wait for 5ms */
			delay_ms(BME680_RESET_PERIOD);

			if (rslt == BME680_OK) {
				/* After reset get the memory page */
				if (intf == BME680_SPI_INTF)
					rslt = getMemPage();
			}
		}
	}

	return rslt;
}

/*!
 * @brief This API is used to set the oversampling, filter and T,P,H, gas selection
 * settings in the sensor.
 */
int8_t BME680::setSensorSettings(uint16_t desired_settings)
{
	int8_t rslt;
	uint8_t reg_addr;
	uint8_t data = 0;
	uint8_t count = 0;
	uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 };
	uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
	uint8_t intended_power_mode = power_mode; /* Save intended power mode */

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		if (desired_settings & BME680_GAS_MEAS_SEL)
			rslt = setGasConfig();

		power_mode = BME680_SLEEP_MODE;
		if (rslt == BME680_OK)
			rslt = getSensorMode();

		/* Selecting the filter */
		if (desired_settings & BME680_FILTER_SEL) {
			rslt = boundaryCheck(&tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127);
			reg_addr = BME680_CONF_ODR_FILT_ADDR;

			if (rslt == BME680_OK)
				rslt = getRegs(reg_addr, &data, 1);

			if (desired_settings & BME680_FILTER_SEL)
				data = BME680_SET_BITS(data, BME680_FILTER, tph_sett.filter);

			reg_array[count] = reg_addr; /* Append configuration */
			data_array[count] = data;
			count++;
		}

		/* Selecting heater control for the sensor */
		if (desired_settings & BME680_HCNTRL_SEL) {
			rslt = boundaryCheck(&gas_sett.heatr_ctrl, BME680_ENABLE_HEATER,
				BME680_DISABLE_HEATER);
			reg_addr = BME680_CONF_HEAT_CTRL_ADDR;

			if (rslt == BME680_OK)
				rslt = getRegs(reg_addr, &data, 1);
			data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, gas_sett.heatr_ctrl);

			reg_array[count] = reg_addr; /* Append configuration */
			data_array[count] = data;
			count++;
		}

		/* Selecting heater T,P oversampling for the sensor */
		if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
			rslt = boundaryCheck(&tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X);
			reg_addr = BME680_CONF_T_P_MODE_ADDR;

			if (rslt == BME680_OK)
				rslt = getRegs(reg_addr, &data, 1);

			if (desired_settings & BME680_OST_SEL)
				data = BME680_SET_BITS(data, BME680_OST, tph_sett.os_temp);

			if (desired_settings & BME680_OSP_SEL)
				data = BME680_SET_BITS(data, BME680_OSP, tph_sett.os_pres);

			reg_array[count] = reg_addr;
			data_array[count] = data;
			count++;
		}

		/* Selecting humidity oversampling for the sensor */
		if (desired_settings & BME680_OSH_SEL) {
			rslt = boundaryCheck(&tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X);
			reg_addr = BME680_CONF_OS_H_ADDR;

			if (rslt == BME680_OK)
				rslt = getRegs(reg_addr, &data, 1);
			data = BME680_SET_BITS_POS_0(data, BME680_OSH, tph_sett.os_hum);

			reg_array[count] = reg_addr; /* Append configuration */
			data_array[count] = data;
			count++;
		}

		/* Selecting the runGas and NB conversion settings for the sensor */
		if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
			rslt = boundaryCheck(&gas_sett.run_gas, BME680_RUN_GAS_DISABLE,
				BME680_RUN_GAS_ENABLE);
			if (rslt == BME680_OK) {
				/* Validate boundary conditions */
				rslt = boundaryCheck(&gas_sett.nb_conv, BME680_NBCONV_MIN,
					BME680_NBCONV_MAX);
			}

			reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR;

			if (rslt == BME680_OK)
				rslt = getRegs(reg_addr, &data, 1);

			if (desired_settings & BME680_RUN_GAS_SEL)
				data = BME680_SET_BITS(data, BME680_RUN_GAS, gas_sett.run_gas);

			if (desired_settings & BME680_NBCONV_SEL)
				data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, gas_sett.nb_conv);

			reg_array[count] = reg_addr; /* Append configuration */
			data_array[count] = data;
			count++;
		}

		if (rslt == BME680_OK)
			rslt = setRegs(reg_array, data_array, count);

		/* Restore previous intended power mode */
		power_mode = intended_power_mode;
	}

	return rslt;
}

/*!
 * @brief This API is used to get the oversampling, filter and T,P,H, gas selection
 * settings in the sensor.
 */
int8_t BME680::getSensorSettings(uint16_t desired_settings)
{
	int8_t rslt;
	/* starting address of the register array for burst read*/
	uint8_t reg_addr = BME680_CONF_HEAT_CTRL_ADDR;
	uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		rslt = getRegs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH);

		if (rslt == BME680_OK) {
			if (desired_settings & BME680_GAS_MEAS_SEL)
				rslt = getGasConfig();

			/* get the T,P,H ,Filter,ODR settings here */
			if (desired_settings & BME680_FILTER_SEL)
				tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX],
					BME680_FILTER);

			if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
				tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST);
				tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP);
			}

			if (desired_settings & BME680_OSH_SEL)
				tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX],
					BME680_OSH);

			/* get the gas related settings */
			if (desired_settings & BME680_HCNTRL_SEL)
				gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX],
					BME680_HCTRL);

			if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
				gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX],
					BME680_NBCONV);
				gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX],
					BME680_RUN_GAS);
			}
		}
	} else {
		rslt = BME680_E_NULL_PTR;
	}

	return rslt;
}

/*!
 * @brief This API is used to set the power mode of the sensor.
 */
int8_t BME680::setSensorMode()
{
	int8_t rslt;
	uint8_t tmp_pow_mode;
	uint8_t pow_mode = 0;
	uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		/* Call repeatedly until in sleep */
		do {
			rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1);
			if (rslt == BME680_OK) {
				/* Put to sleep before changing mode */
				pow_mode = (tmp_pow_mode & BME680_MODE_MSK);

				if (pow_mode != BME680_SLEEP_MODE) {
					tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */
					rslt = setRegs(&reg_addr, &tmp_pow_mode, 1);
					delay_ms(BME680_POLL_PERIOD_MS);
				}
			}
		} while (pow_mode != BME680_SLEEP_MODE);

		/* Already in sleep */
		if (power_mode != BME680_SLEEP_MODE) {
			tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (power_mode & BME680_MODE_MSK);
			if (rslt == BME680_OK)
				rslt = setRegs(&reg_addr, &tmp_pow_mode, 1);
		}
	}

	return rslt;
}

/*!
 * @brief This API is used to get the power mode of the sensor.
 */
int8_t BME680::getSensorMode()
{
	int8_t rslt;
	uint8_t mode;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &mode, 1);
		/* Masking the other register bit info*/
		power_mode = mode & BME680_MODE_MSK;
	}

	return rslt;
}

/*!
 * @brief This API is used to set the profile duration of the sensor.
 */
void BME680::setProfileDur(uint16_t duration)
{
	uint32_t tph_dur; /* Calculate in us */
	uint32_t meas_cycles;
	uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};

	meas_cycles = os_to_meas_cycles[tph_sett.os_temp];
	meas_cycles += os_to_meas_cycles[tph_sett.os_pres];
	meas_cycles += os_to_meas_cycles[tph_sett.os_hum];

	/* TPH measurement duration */
	tph_dur = meas_cycles * UINT32_C(1963);
	tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
	tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
	tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
	tph_dur /= UINT32_C(1000); /* Convert to ms */

	tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
	/* The remaining time should be used for heating */
	gas_sett.heatr_dur = duration - (uint16_t) tph_dur;
}

/*!
 * @brief This API is used to get the profile duration of the sensor.
 */
void BME680::getProfileDur(uint16_t *duration)
{
	uint32_t tph_dur; /* Calculate in us */
	uint32_t meas_cycles;
	uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};

	meas_cycles = os_to_meas_cycles[tph_sett.os_temp];
	meas_cycles += os_to_meas_cycles[tph_sett.os_pres];
	meas_cycles += os_to_meas_cycles[tph_sett.os_hum];

	/* TPH measurement duration */
	tph_dur = meas_cycles * UINT32_C(1963);
	tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
	tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
	tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
	tph_dur /= UINT32_C(1000); /* Convert to ms */

	tph_dur += UINT32_C(1); /* Wake up duration of 1ms */

	*duration = (uint16_t) tph_dur;

	/* Get the gas duration only when the run gas is enabled */
	if (gas_sett.run_gas) {
		/* The remaining time should be used for heating */
		*duration += gas_sett.heatr_dur;
	}
}

/*!
 * @brief This API reads the pressure, temperature and humidity and gas data
 * from the sensor, compensates the data and store it in the bme680_data
 * structure instance passed by the user.
 */
int8_t BME680::getSensorData(struct bme680_field_data *data)
{
	int8_t rslt;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		/* Reading the sensor data in forced mode only */
		rslt = readFieldData(data);
		if (rslt == BME680_OK) {
			if (data->status & BME680_NEW_DATA_MSK)
				new_fields = 1;
			else
				new_fields = 0;
		}
	}

	return rslt;
}

/*!
 * @brief This internal API is used to read the calibrated data from the sensor.
 */
int8_t BME680::getCalibData()
{
	int8_t rslt;
	uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 };
	uint8_t temp_var = 0; /* Temporary variable */

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		rslt = getRegs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN);
		/* Append the second half in the same array */
		if (rslt == BME680_OK)
			rslt = getRegs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN]
			, BME680_COEFF_ADDR2_LEN);

		/* Temperature related coefficients */
		calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG],
			coeff_array[BME680_T1_LSB_REG]));
		calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG],
			coeff_array[BME680_T2_LSB_REG]));
		calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]);

		/* Pressure related coefficients */
		calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG],
			coeff_array[BME680_P1_LSB_REG]));
		calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG],
			coeff_array[BME680_P2_LSB_REG]));
		calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG];
		calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG],
			coeff_array[BME680_P4_LSB_REG]));
		calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG],
			coeff_array[BME680_P5_LSB_REG]));
		calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]);
		calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]);
		calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG],
			coeff_array[BME680_P8_LSB_REG]));
		calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG],
			coeff_array[BME680_P9_LSB_REG]));
		calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]);

		/* Humidity related coefficients */
		calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
			| (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK));
		calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
			| ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL));
		calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG];
		calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG];
		calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG];
		calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG];
		calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG];

		/* Gas heater related coefficients */
		calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG];
		calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG],
			coeff_array[BME680_GH2_LSB_REG]));
		calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG];

		/* Other coefficients */
		if (rslt == BME680_OK) {
			rslt = getRegs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1);

			calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16);
			if (rslt == BME680_OK) {
				rslt = getRegs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1);

				calib.res_heat_val = (int8_t) temp_var;
				if (rslt == BME680_OK)
					rslt = getRegs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1);
			}
		}
		calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16;
	}

	return rslt;
}

/*!
 * @brief This internal API is used to set the gas configuration of the sensor.
 */
int8_t BME680::setGasConfig()
{
	int8_t rslt;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {

		uint8_t reg_addr[2] = {0};
		uint8_t reg_data[2] = {0};

		if (power_mode == BME680_FORCED_MODE) {
			reg_addr[0] = BME680_RES_HEAT0_ADDR;
			reg_data[0] = calcHeaterRes(gas_sett.heatr_temp);
			reg_addr[1] = BME680_GAS_WAIT0_ADDR;
			reg_data[1] = calcHeaterDur(gas_sett.heatr_dur);
			gas_sett.nb_conv = 0;
		} else {
			rslt = BME680_W_DEFINE_PWR_MODE;
		}
		if (rslt == BME680_OK)
			rslt = setRegs(reg_addr, reg_data, 2);
	}

	return rslt;
}

/*!
 * @brief This internal API is used to get the gas configuration of the sensor.
 * @note heatr_temp and heatr_dur values are currently register data
 * and not the actual values set
 */
int8_t BME680::getGasConfig()
{
	int8_t rslt;
	/* starting address of the register array for burst read*/
	uint8_t reg_addr1 = BME680_ADDR_SENS_CONF_START;
	uint8_t reg_addr2 = BME680_ADDR_GAS_CONF_START;
	uint8_t reg_data = 0;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		if (BME680_SPI_INTF == intf) {
			/* Memory page switch the SPI address*/
			rslt = setMemPage(reg_addr1);
		}

		if (rslt == BME680_OK) {
			rslt = getRegs(reg_addr1, &reg_data, 1);
			if (rslt == BME680_OK) {
				gas_sett.heatr_temp = reg_data;
				rslt = getRegs(reg_addr2, &reg_data, 1);
				if (rslt == BME680_OK) {
					/* Heating duration register value */
					gas_sett.heatr_dur = reg_data;
				}
			}
		}
	}

	return rslt;
}

#ifndef BME680_FLOAT_POINT_COMPENSATION

/*!
 * @brief This internal API is used to calculate the temperature value.
 */
int16_t BME680::calcTemperature(uint32_t temp_adc)
{
	int64_t var1;
	int64_t var2;
	int64_t var3;
	int16_t calc_temp;

	var1 = ((int32_t) temp_adc >> 3) - ((int32_t) calib.par_t1 << 1);
	var2 = (var1 * (int32_t) calib.par_t2) >> 11;
	var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
	var3 = ((var3) * ((int32_t) calib.par_t3 << 4)) >> 14;
	calib.t_fine = (int32_t) (var2 + var3);
	calc_temp = (int16_t) (((calib.t_fine * 5) + 128) >> 8);

	return calc_temp;
}

/*!
 * @brief This internal API is used to calculate the pressure value.
 */
uint32_t BME680::calcPressure(uint32_t pres_adc)
{
	int32_t var1;
	int32_t var2;
	int32_t var3;
	int32_t pressure_comp;

	var1 = (((int32_t)calib.t_fine) >> 1) - 64000;
	var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) *
		(int32_t)calib.par_p6) >> 2;
	var2 = var2 + ((var1 * (int32_t)calib.par_p5) << 1);
	var2 = (var2 >> 2) + ((int32_t)calib.par_p4 << 16);
	var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
		((int32_t)calib.par_p3 << 5)) >> 3) +
		(((int32_t)calib.par_p2 * var1) >> 1);
	var1 = var1 >> 18;
	var1 = ((32768 + var1) * (int32_t)calib.par_p1) >> 15;
	pressure_comp = 1048576 - pres_adc;
	pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125));
	if (pressure_comp >= BME680_MAX_OVERFLOW_VAL)
		pressure_comp = ((pressure_comp / var1) << 1);
	else
		pressure_comp = ((pressure_comp << 1) / var1);
	var1 = ((int32_t)calib.par_p9 * (int32_t)(((pressure_comp >> 3) *
		(pressure_comp >> 3)) >> 13)) >> 12;
	var2 = ((int32_t)(pressure_comp >> 2) *
		(int32_t)calib.par_p8) >> 13;
	var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) *
		(int32_t)(pressure_comp >> 8) *
		(int32_t)calib.par_p10) >> 17;

	pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 +
		((int32_t)calib.par_p7 << 7)) >> 4);

	return (uint32_t)pressure_comp;

}

/*!
 * @brief This internal API is used to calculate the humidity value.
 */
uint32_t BME680::calcHumidity(uint16_t hum_adc)
{
	int32_t var1;
	int32_t var2;
	int32_t var3;
	int32_t var4;
	int32_t var5;
	int32_t var6;
	int32_t temp_scaled;
	int32_t calc_hum;

	temp_scaled = (((int32_t) calib.t_fine * 5) + 128) >> 8;
	var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) calib.par_h1 * 16)))
		- (((temp_scaled * (int32_t) calib.par_h3) / ((int32_t) 100)) >> 1);
	var2 = ((int32_t) calib.par_h2
		* (((temp_scaled * (int32_t) calib.par_h4) / ((int32_t) 100))
			+ (((temp_scaled * ((temp_scaled * (int32_t) calib.par_h5) / ((int32_t) 100))) >> 6)
				/ ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10;
	var3 = var1 * var2;
	var4 = (int32_t) calib.par_h6 << 7;
	var4 = ((var4) + ((temp_scaled * (int32_t) calib.par_h7) / ((int32_t) 100))) >> 4;
	var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
	var6 = (var4 * var5) >> 1;
	calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12;

	if (calc_hum > 100000) /* Cap at 100%rH */
		calc_hum = 100000;
	else if (calc_hum < 0)
		calc_hum = 0;

	return (uint32_t) calc_hum;
}

/*!
 * @brief This internal API is used to calculate the Gas Resistance value.
 */
uint32_t BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range)
{
	int64_t var1;
	uint64_t var2;
	int64_t var3;
	uint32_t calc_gas_res;
	/**Look up table 1 for the possible gas range values */
	uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647),
		UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777),
		UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228),
		UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2147483647) };
	/**Look up table 2 for the possible gas range values */
	uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000),
		UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016),
		UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000),
		UINT32_C(250000), UINT32_C(125000) };

	var1 = (int64_t) ((1340 + (5 * (int64_t) calib.range_sw_err)) *
		((int64_t) lookupTable1[gas_range])) >> 16;
	var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1);
	var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9);
	calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 >> 1)) / (int64_t) var2);

	return calc_gas_res;
}

/*!
 * @brief This internal API is used to calculate the Heat Resistance value.
 */
uint8_t BME680::calcHeaterRes(uint16_t temp)
{
	uint8_t heatr_res;
	int32_t var1;
	int32_t var2;
	int32_t var3;
	int32_t var4;
	int32_t var5;
	int32_t heatr_res_x100;

	if (temp > 400) /* Cap temperature */
		temp = 400;

	var1 = (((int32_t) amb_temp * calib.par_gh3) / 1000) * 256;
	var2 = (calib.par_gh1 + 784) * (((((calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10);
	var3 = var1 + (var2 / 2);
	var4 = (var3 / (calib.res_heat_range + 4));
	var5 = (131 * calib.res_heat_val) + 65536;
	heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34);
	heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100);

	return heatr_res;
}

#else


/*!
 * @brief This internal API is used to calculate the
 * temperature value in float format
 */
float BME680::calcTemperature(uint32_t temp_adc)
{
	float var1 = 0;
	float var2 = 0;
	float calc_temp = 0;

	/* calculate var1 data */
	var1  = ((((float)temp_adc / 16384.0f) - ((float)calib.par_t1 / 1024.0f))
			* ((float)calib.par_t2));

	/* calculate var2 data */
	var2  = (((((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f)) *
		(((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f))) *
		((float)calib.par_t3 * 16.0f));

	/* t_fine value*/
	calib.t_fine = (var1 + var2);

	/* compensated temperature data*/
	calc_temp  = ((calib.t_fine) / 5120.0f);

	return calc_temp;
}

/*!
 * @brief This internal API is used to calculate the
 * pressure value in float format
 */
float BME680::calcPressure(uint32_t pres_adc)
{
	float var1 = 0;
	float var2 = 0;
	float var3 = 0;
	float calc_pres = 0;

	var1 = (((float)calib.t_fine / 2.0f) - 64000.0f);
	var2 = var1 * var1 * (((float)calib.par_p6) / (131072.0f));
	var2 = var2 + (var1 * ((float)calib.par_p5) * 2.0f);
	var2 = (var2 / 4.0f) + (((float)calib.par_p4) * 65536.0f);
	var1 = (((((float)calib.par_p3 * var1 * var1) / 16384.0f)
		+ ((float)calib.par_p2 * var1)) / 524288.0f);
	var1 = ((1.0f + (var1 / 32768.0f)) * ((float)calib.par_p1));
	calc_pres = (1048576.0f - ((float)pres_adc));

	/* Avoid exception caused by division by zero */
	if ((int)var1 != 0) {
		calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1);
		var1 = (((float)calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f;
		var2 = calc_pres * (((float)calib.par_p8) / 32768.0f);
		var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f)
			* (calib.par_p10 / 131072.0f));
		calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)calib.par_p7 * 128.0f)) / 16.0f);
	} else {
		calc_pres = 0;
	}

	return calc_pres;
}

/*!
 * @brief This internal API is used to calculate the
 * humidity value in float format
 */
float BME680::calcHumidity(uint16_t hum_adc)
{
	float calc_hum = 0;
	float var1 = 0;
	float var2 = 0;
	float var3 = 0;
	float var4 = 0;
	float temp_comp;

	/* compensated temperature data*/
	temp_comp  = ((calib.t_fine) / 5120.0f);

	var1 = (float)((float)hum_adc) - (((float)calib.par_h1 * 16.0f) + (((float)calib.par_h3 / 2.0f)
		* temp_comp));

	var2 = var1 * ((float)(((float) calib.par_h2 / 262144.0f) * (1.0f + (((float)calib.par_h4 / 16384.0f)
		* temp_comp) + (((float)calib.par_h5 / 1048576.0f) * temp_comp * temp_comp))));

	var3 = (float) calib.par_h6 / 16384.0f;

	var4 = (float) calib.par_h7 / 2097152.0f;

	calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2);

	if (calc_hum > 100.0f)
		calc_hum = 100.0f;
	else if (calc_hum < 0.0f)
		calc_hum = 0.0f;

	return calc_hum;
}

/*!
 * @brief This internal API is used to calculate the
 * gas resistance value in float format
 */
float BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range)
{
	float calc_gas_res;
	float var1 = 0;
	float var2 = 0;
	float var3 = 0;

	const float lookup_k1_range[16] = {
	0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8,
	0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0};
	const float lookup_k2_range[16] = {
	0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
	-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

	var1 = (1340.0f + (5.0f * calib.range_sw_err));
	var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f);
	var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f);

	calc_gas_res = 1.0f / (float)(var3 * (0.000000125f) * (float)(1 << gas_range) * (((((float)gas_res_adc)
		- 512.0f)/var2) + 1.0f));

	return calc_gas_res;
}

/*!
 * @brief This internal API is used to calculate the
 * heater resistance value in float format
 */
float BME680::calcHeaterRes(uint16_t temp)
{
	float var1 = 0;
	float var2 = 0;
	float var3 = 0;
	float var4 = 0;
	float var5 = 0;
	float res_heat = 0;

	if (temp > 400) /* Cap temperature */
		temp = 400;

	var1 = (((float)calib.par_gh1 / (16.0f)) + 49.0f);
	var2 = ((((float)calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f);
	var3 = ((float)calib.par_gh3 / (1024.0f));
	var4 = (var1 * (1.0f + (var2 * (float)temp)));
	var5 = (var4 + (var3 * (float)amb_temp));
	res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)calib.res_heat_range)) *
		(1/(1 + ((float) calib.res_heat_val * 0.002f)))) - 25));

	return res_heat;
}

#endif

/*!
 * @brief This internal API is used to calculate the Heat duration value.
 */
uint8_t BME680::calcHeaterDur(uint16_t dur)
{
	uint8_t factor = 0;
	uint8_t durval;

	if (dur >= 0xfc0) {
		durval = 0xff; /* Max duration*/
	} else {
		while (dur > 0x3F) {
			dur = dur / 4;
			factor += 1;
		}
		durval = (uint8_t) (dur + (factor * 64));
	}

	return durval;
}

/*!
 * @brief This internal API is used to calculate the field data of sensor.
 */
int8_t BME680::readFieldData(struct bme680_field_data *data)
{
	int8_t rslt;
	uint8_t buff[BME680_FIELD_LENGTH] = { 0 };
	uint8_t gas_range;
	uint32_t adc_temp;
	uint32_t adc_pres;
	uint16_t adc_hum;
	uint16_t adc_gas_res;
	uint8_t tries = 10;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	do {
		if (rslt == BME680_OK) {
			rslt = getRegs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH);

			data->status = buff[0] & BME680_NEW_DATA_MSK;
			data->gas_index = buff[0] & BME680_GAS_INDEX_MSK;
			data->meas_index = buff[1];

			/* read the raw data from the sensor */
			adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16)
				| ((uint32_t) buff[4] / 16));
			adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16)
				| ((uint32_t) buff[7] / 16));
			adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]);
			adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64));
			gas_range = buff[14] & BME680_GAS_RANGE_MSK;

			data->status |= buff[14] & BME680_GASM_VALID_MSK;
			data->status |= buff[14] & BME680_HEAT_STAB_MSK;

			if (data->status & BME680_NEW_DATA_MSK) {
				data->temperature = calcTemperature(adc_temp);
				data->pressure = calcPressure(adc_pres);
				data->humidity = calcHumidity(adc_hum);
				data->gas_resistance = calcGasResistance(adc_gas_res, gas_range);
				break;
			}
			/* Delay to poll the data */
			delay_ms(BME680_POLL_PERIOD_MS);
		}
		tries--;
	} while (tries);

	if (!tries)
		rslt = BME680_W_NO_NEW_DATA;

	return rslt;
}

/*!
 * @brief This internal API is used to set the memory page based on register address.
 */
int8_t BME680::setMemPage(uint8_t reg_addr)
{
	int8_t rslt;
	uint8_t reg;
	uint8_t new_mem_page;

	/* Check for null pointers in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		if (reg_addr > 0x7f)
			new_mem_page = BME680_MEM_PAGE1;
		else
			new_mem_page = BME680_MEM_PAGE0;

		if (new_mem_page != mem_page) {
			mem_page = new_mem_page;

			com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
			if (com_rslt != 0)
				rslt = BME680_E_COM_FAIL;

			if (rslt == BME680_OK) {
				reg = reg & (~BME680_MEM_PAGE_MSK);
				reg = reg | (mem_page & BME680_MEM_PAGE_MSK);

				com_rslt = write(dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK,
					&reg, 1);
				if (com_rslt != 0)
					rslt = BME680_E_COM_FAIL;
			}
		}
	}

	return rslt;
}

/*!
 * @brief This internal API is used to get the memory page based on register address.
 */
int8_t BME680::getMemPage()
{
	int8_t rslt;
	uint8_t reg;

	/* Check for null pointer in the device structure*/
	rslt = nullPtrCheck();
	if (rslt == BME680_OK) {
		com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
		if (com_rslt != 0)
			rslt = BME680_E_COM_FAIL;
		else
			mem_page = reg & BME680_MEM_PAGE_MSK;
	}

	return rslt;
}

/*!
 * @brief This internal API is used to validate the boundary
 * conditions.
 */
int8_t BME680::boundaryCheck(uint8_t *value, uint8_t min, uint8_t max)
{
	int8_t rslt = BME680_OK;

	if (value != NULL) {
		/* Check if value is below minimum value */
		if (*value < min) {
			/* Auto correct the invalid value to minimum value */
			*value = min;
			info_msg |= BME680_I_MIN_CORRECTION;
		}
		/* Check if value is above maximum value */
		if (*value > max) {
			/* Auto correct the invalid value to maximum value */
			*value = max;
			info_msg |= BME680_I_MAX_CORRECTION;
		}
	} else {
		rslt = BME680_E_NULL_PTR;
	}

	return rslt;
}

/*!
 * @brief This internal API is used to validate the device structure pointer for
 * null conditions.
 */
int8_t BME680::nullPtrCheck()
{
	int8_t rslt;

	if ((read == NULL) || (write == NULL) || (delay_ms == NULL)) {
		/* Device structure pointer is not valid */
		rslt = BME680_E_NULL_PTR;
	} else {
		/* Device structure is fine */
		rslt = BME680_OK;
	}

	return rslt;
}

BME680 bme680(BME680_I2C_ADDR_SECONDARY);