summaryrefslogtreecommitdiff
path: root/src/driver/nrf24l01.cc
blob: 1cde2bac34b504e3a2bb26ca3db9e06cf256b158 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/*
 * Based on https://github.com/nRF24/RF24
 */

#include <stdlib.h>

#include "driver/nrf24l01.h"
#include "driver/nrf24l01/registers.h"
#include "driver/spi.h"
#include "driver/gpio.h"
#include "arch.h"

#ifndef NRF24L01_EN_PIN
#error makeflag nrf24l01_en_pin required
#endif

#ifndef NRF24L01_CS_PIN
#error makeflag nrf24l01_cs_pin required
#endif

static const uint8_t child_pipe[] =
	{
		RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5};
static const uint8_t child_payload_size[] =
	{
		RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5};
static const uint8_t child_pipe_enable[] =
	{
		ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5};

void Nrf24l01::setup()
{
	spi.setup();
	gpio.input(NRF24L01_IRQ_PIN, true);
	gpio.output(NRF24L01_EN_PIN);
	gpio.output(NRF24L01_CS_PIN);
	gpio.write(NRF24L01_EN_PIN, 0);
	csnHigh();
	arch.delay_ms(5);

	// Reset NRF_CONFIG and enable 16-bit CRC.
	writeRegister(NRF_CONFIG, 0b00001100);

	// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
	// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
	// sizes must never be used. See documentation for a more complete explanation.
	setRetries(5, 10);

	// Reset value is MAX
	setPALevel(RF24_PA_MAX);

	setDataRate(RF24_1MBPS);

	// Reset value is "enabled on all pipes"
	setAutoAck(1);

	toggleFeatures();
	writeRegister(FEATURE, 0);
	writeRegister(DYNPD, 0);
	dynamic_payloads_enabled = false;

	// Reset current status
	// Notice reset and flush is the last thing we do
	writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));

	// Set up default configuration.  Callers can always change it later.
	// This channel should be universally safe and not bleed over into adjacent
	// spectrum.
	setChannel(76);

	// Flush buffers
	flushRx();
	flushTx();

	maskIRQ(true, false, false);

	powerUp(); //Power up by default when begin() is called

	// Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
	// PTX should use only 22uA of power
	writeRegister(NRF_CONFIG, (readRegister(NRF_CONFIG)) & ~(1 << PRIM_RX));
}
/*
int Nrf24l01::init(uint8_t addr, uint8_t channel, rf24_datarate_e datarate){
    
  if(channel > 125){
   return -1; 
  }
  
  unsigned char node_addr[5] = {addr, 'x', 'S', 'D', 'P'};
  
  setAutoAck(1);
  enableAckPayload();
  maskIRQ(true, true, false);
  enableDynamicPayloads();  
  setPALevel(RF24_PA_MAX);
  setChannel(channel);
  setDataRate(datarate);
  openWritingPipe((const uint8_t*)GATEWAY_NAME); // GATEWAY_NAME is defined in the MSP430FR5969 RF24_arch_config.h
  currentWritingPipe = 0;
  openReadingPipe(1, node_addr);
#ifdef CONFIG_Apps_SolarDoorplate_PacketHandler
  node_addr[0] = CONFIG_PACKETHANDLER_BROADCAST_ID;
  openReadingPipe(2, node_addr);
#endif  
  if(getChannel() != channel){
   return -2; 
  }
  
  if(getDataRate() != datarate){
   return -3; 
  }
  
  return 0;
  
}
*/
//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
void Nrf24l01::powerUp(void)
{
	uint8_t cfg = readRegister(NRF_CONFIG);

	// if not powered up then power up and wait for the radio to initialize
	if (!(cfg & (1 << PWR_UP)))
	{
		writeRegister(NRF_CONFIG, cfg | (1 << PWR_UP));

		// For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
		// There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
		// the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
		arch.delay_us(5);
	}
}

void Nrf24l01::powerDown(void)
{
	ceLow();
	writeRegister(NRF_CONFIG, readRegister(NRF_CONFIG) & ~(1 << PWR_UP));
}

uint8_t Nrf24l01::getObserveTx(void)
{
	return readRegister(OBSERVE_TX);
}

void Nrf24l01::setRetries(uint8_t delay, uint8_t count)
{
	writeRegister(SETUP_RETR, (delay & 0xf) << ARD | (count & 0xf) << ARC);
}

void Nrf24l01::setPayloadSize(uint8_t size)
{
	payload_size = rf24_min(size, 32);
}

void Nrf24l01::setPALevel(uint8_t level)
{
	uint8_t setup = readRegister(RF_SETUP) & 0b11111000;

	if (level > 3)
	{									// If invalid level, go to max PA
		level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit
	}
	else
	{
		level = (level << 1) + 1; // Else set level as requested
	}

	writeRegister(RF_SETUP, setup |= level); // Write it to the chip
}

bool Nrf24l01::setDataRate(Nrf24l01::rf24_datarate_e speed)
{
	bool result = false;
	uint8_t setup = readRegister(RF_SETUP);

	// HIGH and LOW '00' is 1Mbs - our default
	setup &= ~((1 << RF_DR_LOW) | (1 << RF_DR_HIGH));

	txRxDelay = 85;
	if (speed == RF24_250KBPS)
	{
		// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
		// Making it '10'.
		setup |= (1 << RF_DR_LOW);
		txRxDelay = 155;
	}
	else
	{
		// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
		// Making it '01'
		if (speed == RF24_2MBPS)
		{
			setup |= (1 << RF_DR_HIGH);
			txRxDelay = 65;
		}
	}
	writeRegister(RF_SETUP, setup);

	// Verify our result
	if (readRegister(RF_SETUP) == setup)
	{
		result = true;
	}
	return result;
}

void Nrf24l01::toggleFeatures(void)
{
	beginTransaction();
	txbuf[0] = ACTIVATE;
	txbuf[1] = 0x73;
	spi.xmit(2, txbuf, 0, rxbuf);
	endTransaction();
}

void Nrf24l01::enableAckPayload(void)
{
	//
	// enable ack payload and dynamic payload features
	//

	//toggle_features();
	writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_ACK_PAY) | (1 << EN_DPL));

	//IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));

	//
	// Enable dynamic payload on pipes 0 & 1
	//

	writeRegister(DYNPD, readRegister(DYNPD) | (1 << DPL_P1) | (1 << DPL_P0));
	dynamic_payloads_enabled = true;
}

void Nrf24l01::setChannel(uint8_t channel)
{
	writeRegister(RF_CH, rf24_min(channel, 125));
}

uint8_t Nrf24l01::write(const void *buf, uint8_t len, bool await_ack, bool blocking)
{
	writePayload(buf, len, await_ack ? W_TX_PAYLOAD : W_TX_PAYLOAD_NO_ACK);

	ceHigh();

	if (!blocking)
	{
		arch.delay_us(10);
		ceLow();
		return 0;
	}

	while (!(getStatus() & ((1 << TX_DS) | (1 << MAX_RT))))
		;
	ceLow();
	uint8_t status = writeRegister(NRF_STATUS, ((1 << TX_DS) | (1 << MAX_RT)));

	if (status & (1 << MAX_RT))
	{
		flushTx();
		return 0;
	}
	return 1;
}

void Nrf24l01::startListening(void)
{
	writeRegister(NRF_CONFIG, readRegister(NRF_CONFIG) | (1 << PRIM_RX));
	writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
	ceHigh();

	// Restore the pipe0 adddress, if exists
	if (pipe0_reading_address[0] > 0)
	{
		writeRegister(RX_ADDR_P0, pipe0_reading_address, addr_width);
	}
	else
	{
		closeReadingPipe(0);
	}

	if (readRegister(FEATURE) & (1 << EN_ACK_PAY))
	{
		flushTx();
	}
}

void Nrf24l01::stopListening(void)
{
	ceLow();

	arch.delay_us(txRxDelay);

	if (readRegister(FEATURE) & (1 << EN_ACK_PAY))
	{
		arch.delay_us(txRxDelay); //200
		flushTx();
	}
	//flush_rx();
	writeRegister(NRF_CONFIG, (readRegister(NRF_CONFIG)) & ~(1 << PRIM_RX));

	writeRegister(EN_RXADDR, readRegister(EN_RXADDR) | (1 << child_pipe_enable[0])); // Enable RX on pipe0
}

bool Nrf24l01::available(void)
{
	return available(NULL);
}

/****************************************************************************/

bool Nrf24l01::available(uint8_t *pipe_num)
{
	if (!(readRegister(FIFO_STATUS) & (1 << RX_EMPTY)))
	{

		// If the caller wants the pipe number, include that
		if (pipe_num)
		{
			uint8_t status = getStatus();
			*pipe_num = (status >> RX_P_NO) & 0b111;
		}
		return 1;
	}
	return 0;
}

bool Nrf24l01::testCarrier(void)
{
	return (readRegister(CD) & 1);
}

/****************************************************************************/

bool Nrf24l01::testRPD(void)
{
	return (readRegister(RPD) & 1);
}

void Nrf24l01::openReadingPipe(uint8_t child, const uint8_t *address)
{
	// If this is pipe 0, cache the address.  This is needed because
	// openWritingPipe() will overwrite the pipe 0 address, so
	// startListening() will have to restore it.
	if (child == 0)
	{
		pipe0_reading_address[0] = address[0];
		pipe0_reading_address[1] = address[1];
		pipe0_reading_address[2] = address[2];
		pipe0_reading_address[3] = address[3];
		pipe0_reading_address[4] = address[4];
	}
	if (child <= 6)
	{
		// For pipes 2-5, only write the LSB
		if (child < 2)
		{
			writeRegister(child_pipe[child], address, addr_width);
		}
		else
		{
			writeRegister(child_pipe[child], address, 1);
		}
		writeRegister(child_payload_size[child], payload_size);

		// Note it would be more efficient to set all of the bits for all open
		// pipes at once.  However, I thought it would make the calling code
		// more simple to do it this way.
		writeRegister(EN_RXADDR, readRegister(EN_RXADDR) | (1 << child_pipe_enable[child]));
	}
}

/****************************************************************************/

void Nrf24l01::closeReadingPipe(uint8_t pipe)
{
	writeRegister(EN_RXADDR, readRegister(EN_RXADDR) & ~(1 << child_pipe_enable[pipe]));
}

/****************************************************************************/
void Nrf24l01::openWritingPipe(const uint8_t *address)
{
	// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
	// expects it LSB first too, so we're good.

	writeRegister(RX_ADDR_P0, address, addr_width);
	writeRegister(TX_ADDR, address, addr_width);

	//const uint8_t max_payload_size = 32;
	//write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
	writeRegister(RX_PW_P0, payload_size);
}

void Nrf24l01::setAddressWidth(uint8_t a_width)
{
	if (a_width -= 2)
	{
		writeRegister(SETUP_AW, a_width % 4);
		addr_width = (a_width % 4) + 2;
	}
}

void Nrf24l01::maskIRQ(bool tx, bool fail, bool rx)
{

	uint8_t config = readRegister(NRF_CONFIG);
	/* clear the interrupt flags */
	config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR);
	/* set the specified interrupt flags */
	config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR;
	writeRegister(NRF_CONFIG, config);
}

uint8_t Nrf24l01::getStatus()
{
	txbuf[0] = NOP;
	beginTransaction();
	spi.xmit(1, txbuf, 1, rxbuf);
	endTransaction();

	return rxbuf[0];
}

uint8_t Nrf24l01::readRegister(uint8_t reg)
{
	txbuf[0] = R_REGISTER | (REGISTER_MASK & reg);
	txbuf[1] = NOP;

	beginTransaction();
	spi.xmit(2, txbuf, 2, rxbuf);
	endTransaction();

	return rxbuf[1];
}

uint8_t Nrf24l01::writeRegister(uint8_t reg, const uint8_t *buf, uint8_t len)
{
	txbuf[0] = W_REGISTER | (REGISTER_MASK & reg);

	beginTransaction();
	spi.xmit(1, txbuf, 1, rxbuf);
	spi.xmit(len, (unsigned char *)buf, 0, NULL);
	endTransaction();

	return rxbuf[0];
}

uint8_t Nrf24l01::writeRegister(uint8_t reg, uint8_t value)
{
	txbuf[0] = W_REGISTER | (REGISTER_MASK & reg);
	txbuf[1] = value;

	beginTransaction();
	spi.xmit(2, txbuf, 1, rxbuf);
	endTransaction();

	return rxbuf[0];
}

uint8_t Nrf24l01::readPayload(void *buf, uint8_t data_len)
{
	uint8_t status;
	uint8_t *current = reinterpret_cast<uint8_t *>(buf);

	if (data_len > payload_size)
		data_len = payload_size;
	uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;

	beginTransaction();
	txbuf[0] = R_RX_PAYLOAD;
	spi.xmit(1, txbuf, 1, rxbuf);
	status = rxbuf[0];
	txbuf[0] = 0xf;
	;
	while (data_len--)
	{
		spi.xmit(1, txbuf, 1, rxbuf);
		*current++ = rxbuf[0];
	}
	while (blank_len--)
	{
		spi.xmit(1, txbuf, 1, rxbuf);
	}
	endTransaction();

	return status;
}

void Nrf24l01::read(void *buf, uint8_t len)
{

	// Fetch the payload
	readPayload(buf, len);

	//Clear the two possible interrupt flags with one command
	writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << MAX_RT) | (1 << TX_DS));
}

void Nrf24l01::setDynamicPayloads(const bool enabled)
{
	if (enabled)
	{
		writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_DPL));
		writeRegister(DYNPD, readRegister(DYNPD) | (1 << DPL_P5) | (1 << DPL_P4) | (1 << DPL_P3) | (1 << DPL_P2) | (1 << DPL_P1) | (1 << DPL_P0));
	}
	else
	{
		writeRegister(FEATURE, readRegister(FEATURE) & ~(1 << EN_DPL));
		writeRegister(DYNPD, readRegister(DYNPD) & ~((1 << DPL_P5) | (1 << DPL_P4) | (1 << DPL_P3) | (1 << DPL_P2) | (1 << DPL_P1) | (1 << DPL_P0)));
	}

	dynamic_payloads_enabled = enabled;
}

void Nrf24l01::setDynamicAck(const bool enabled)
{
	if (enabled)
	{
		writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_DYN_ACK));
	}
	else
	{
		writeRegister(FEATURE, readRegister(FEATURE) & ~(1 << EN_DYN_ACK));
	}
}

void Nrf24l01::setAutoAck(bool enable)
{
	if (enable)
		writeRegister(EN_AA, 0b111111);
	else
		writeRegister(EN_AA, 0);
}

void Nrf24l01::setAutoAck(uint8_t pipe, bool enable)
{
	if (pipe <= 6)
	{
		uint8_t en_aa = readRegister(EN_AA);
		if (enable)
		{
			en_aa |= (1 << pipe);
		}
		else
		{
			en_aa &= ~(1 << pipe);
		}
		writeRegister(EN_AA, en_aa);
	}
}

uint8_t Nrf24l01::writePayload(const void *buf, uint8_t data_len, const uint8_t writeType)
{
	data_len = rf24_min(data_len, payload_size);
	uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;

	//printf("[Writing %u bytes %u blanks]",data_len,blank_len);
	//IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );

	beginTransaction();
	txbuf[0] = writeType;
	spi.xmit(1, txbuf, 1, rxbuf);
	spi.xmit(data_len, (unsigned char *)buf, 0, NULL);
	txbuf[0] = 0;
	while (blank_len--)
	{
		spi.xmit(1, txbuf, 0, NULL);
	}
	endTransaction();

	return rxbuf[0];
}

uint8_t Nrf24l01::flushRx(void)
{
	txbuf[0] = FLUSH_RX;
	beginTransaction();
	spi.xmit(1, txbuf, 1, rxbuf);
	endTransaction();
	return rxbuf[0];
}

/****************************************************************************/

uint8_t Nrf24l01::flushTx(void)
{
	txbuf[0] = FLUSH_TX;
	beginTransaction();
	spi.xmit(1, txbuf, 1, rxbuf);
	endTransaction();
	return rxbuf[0];
}

Nrf24l01 nrf24l01;