summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-01-30 16:43:46 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-01-30 16:43:46 +0100
commit606424e28b40d4754575bb8ebc86f9103b034f16 (patch)
treef30361267b39487a764666e4f0c0df7d0373b339
parentc1e6a149318313713a4f2a655c6a1507f1c54f51 (diff)
keysightdlog: Add plotting
-rwxr-xr-xlib/keysightdlog.py45
1 files changed, 45 insertions, 0 deletions
diff --git a/lib/keysightdlog.py b/lib/keysightdlog.py
index 3864d6e..0cf8da1 100755
--- a/lib/keysightdlog.py
+++ b/lib/keysightdlog.py
@@ -1,12 +1,35 @@
#!/usr/bin/env python3
import lzma
+import matplotlib.pyplot as plt
import numpy as np
import os
import struct
import sys
import xml.etree.ElementTree as ET
+def plot_y(Y, **kwargs):
+ plot_xy(np.arange(len(Y)), Y, **kwargs)
+
+def plot_xy(X, Y, xlabel = None, ylabel = None, title = None, output = None):
+ fig, ax1 = plt.subplots(figsize=(10,6))
+ if title != None:
+ fig.canvas.set_window_title(title)
+ if xlabel != None:
+ ax1.set_xlabel(xlabel)
+ if ylabel != None:
+ ax1.set_ylabel(ylabel)
+ plt.subplots_adjust(left = 0.1, bottom = 0.1, right = 0.99, top = 0.99)
+ plt.plot(X, Y, "bo", markersize=2)
+ if output:
+ plt.savefig(output)
+ with open('{}.txt'.format(output), 'w') as f:
+ print('X Y', file=f)
+ for i in range(len(X)):
+ print('{} {}'.format(X[i], Y[i]), file=f)
+ else:
+ plt.show()
+
filename = sys.argv[1]
with open(filename, 'rb') as logfile:
@@ -73,8 +96,30 @@ for i, channel in enumerate(channels):
if i > 0 and channel_type == 'A' and channels[i-1][2] == 'V' and channel_id == channels[i-1][0]:
power = data[i-1] * data[i]
+ power = 3.6 * data[i]
print('channel {:d} ({:s}): min {:f}, max {:f}, mean {:f} W'.format(
channel_id, channel_model, np.min(power), np.max(power), np.mean(power)))
+ min_power = np.min(power)
+ max_power = np.max(power)
+ power_border = np.mean([min_power, max_power])
+ low_power = power[power < power_border]
+ high_power = power[power >= power_border]
+ plot_y(power)
+ print(' avg low / high power (delta): {:f} / {:f} ({:f}) W'.format(
+ np.mean(low_power), np.mean(high_power),
+ np.mean(high_power) - np.mean(low_power)))
+ #plot_y(low_power)
+ #plot_y(high_power)
+ high_power_durations = []
+ current_high_power_duration = 0
+ for is_hpe in power >= power_border:
+ if is_hpe:
+ current_high_power_duration += interval
+ else:
+ if current_high_power_duration > 0:
+ high_power_durations.append(current_high_power_duration)
+ current_high_power_duration = 0
+ print(' avg high-power duration: {:f} µs'.format(np.mean(high_power_durations) * 1000000))
#print(xml_header)
#print(raw_header)