diff options
author | Birte Kristina Friesel <birte.friesel@uos.de> | 2025-03-24 13:27:15 +0100 |
---|---|---|
committer | Birte Kristina Friesel <birte.friesel@uos.de> | 2025-03-24 13:27:15 +0100 |
commit | 635d9135f740a650b89026dbf198c163284bd1fa (patch) | |
tree | ccaa4a6abdf720b17863a1fcb4b187ad5abfc751 | |
parent | 102f2ff962eda1523c357471d089e15b6e4e10dc (diff) |
Move workload parser and evaluation to a separate class
-rwxr-xr-x | bin/workload.py | 67 | ||||
-rw-r--r-- | lib/workload.py | 77 |
2 files changed, 85 insertions, 59 deletions
diff --git a/bin/workload.py b/bin/workload.py index 742d336..5d71932 100755 --- a/bin/workload.py +++ b/bin/workload.py @@ -7,6 +7,7 @@ import sys import dfatool.cli import dfatool.utils from dfatool.model import AnalyticModel +from dfatool.workload import Workload def main(): @@ -71,65 +72,13 @@ def main(): for attr in models[i].attributes(name): print(f" {name}.{attr} {param_info(name, attr)}") - aggregate = args.aggregate_init - for event in args.event: - - event_normalizer = lambda p: p - if "/" in event: - v1, v2 = event.split("/") - if dfatool.utils.is_numeric(v1): - event = v2.strip() - event_normalizer = lambda p: dfatool.utils.soft_cast_float(v1) / p - elif dfatool.utils.is_numeric(v2): - event = v1.strip() - event_normalizer = lambda p: p / dfatool.utils.soft_cast_float(v2) - else: - raise RuntimeError(f"Cannot parse '{event}'") - - nn, param = event.split("(") - name, action = nn.split(".") - param_model = None - ref_model = None - - for model in models: - if name in model.names and action in model.attributes(name): - ref_model = model - if args.use_lut: - param_model = model.get_param_lut(allow_none=True) - else: - param_model, param_info = model.get_fitted() - break - - if param_model is None: - raise RuntimeError(f"Did not find a model for {name}.{action}") - - param = param.removesuffix(")") - if param == "": - param = dict() - else: - param = dfatool.utils.parse_conf_str(param) - - param_list = dfatool.utils.param_dict_to_list(param, ref_model.parameters) - - if not args.use_lut and not param_info(name, action).is_predictable(param_list): - logging.warning( - f"Cannot predict {name}.{action}({param}), falling back to static model" - ) - - try: - event_output = event_normalizer( - param_model( - name, - action, - param=param_list, - ) - ) - except KeyError: - logging.error(f"Cannot predict {name}.{action}({param}) from LUT model") - raise - - if args.aggregate == "sum": - aggregate += event_output + workload = Workload(models) + aggregate = workload.eval_strs( + args.event, + aggregate=args.aggregate, + aggregate_init=args.aggregate_init, + use_lut=args.use_lut, + ) if args.normalize_output: sf = dfatool.cli.parse_shift_function( diff --git a/lib/workload.py b/lib/workload.py new file mode 100644 index 0000000..3e4f1f8 --- /dev/null +++ b/lib/workload.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python3 + +import logging +from . import utils + +logger = logging.getLogger(__name__) + + +class Workload: + def __init__(self, models): + self.models = models + + def _event_normalizer(self, event): + event_normalizer = lambda p: p + if "/" in event: + v1, v2 = event.split("/") + if utils.is_numeric(v1): + event = v2.strip() + event_normalizer = lambda p: utils.soft_cast_float(v1) / p + elif utils.is_numeric(v2): + event = v1.strip() + event_normalizer = lambda p: p / utils.soft_cast_float(v2) + else: + raise RuntimeError(f"Cannot parse '{event}'") + return event, event_normalizer + + def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False): + for event in events: + event, event_normalizer = self._event_normalizer(event) + nn, param = event.split("(") + name, action = nn.split(".") + param_model = None + ref_model = None + + for model in self.models: + if name in model.names and action in model.attributes(name): + ref_model = model + if use_lut: + param_model = model.get_param_lut(allow_none=True) + else: + param_model, param_info = model.get_fitted() + break + + if param_model is None: + raise RuntimeError(f"Did not find a model for {name}.{action}") + + param = param.removesuffix(")") + if param == "": + param = dict() + else: + param = utils.parse_conf_str(param) + + param_list = utils.param_dict_to_list(param, ref_model.parameters) + + if not use_lut and not param_info(name, action).is_predictable(param_list): + logging.warning( + f"Cannot predict {name}.{action}({param}), falling back to static model" + ) + + try: + event_output = event_normalizer( + param_model( + name, + action, + param=param_list, + ) + ) + except KeyError: + logging.error(f"Cannot predict {name}.{action}({param}) from LUT model") + raise + + if aggregate == "sum": + aggregate_init += event_output + else: + raise RuntimeError(f"Unknown aggregate type: {aggregate}") + + return aggregate_init |