summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBirte Kristina Friesel <birte.friesel@uos.de>2025-03-24 13:27:15 +0100
committerBirte Kristina Friesel <birte.friesel@uos.de>2025-03-24 13:27:15 +0100
commit635d9135f740a650b89026dbf198c163284bd1fa (patch)
treeccaa4a6abdf720b17863a1fcb4b187ad5abfc751
parent102f2ff962eda1523c357471d089e15b6e4e10dc (diff)
Move workload parser and evaluation to a separate class
-rwxr-xr-xbin/workload.py67
-rw-r--r--lib/workload.py77
2 files changed, 85 insertions, 59 deletions
diff --git a/bin/workload.py b/bin/workload.py
index 742d336..5d71932 100755
--- a/bin/workload.py
+++ b/bin/workload.py
@@ -7,6 +7,7 @@ import sys
import dfatool.cli
import dfatool.utils
from dfatool.model import AnalyticModel
+from dfatool.workload import Workload
def main():
@@ -71,65 +72,13 @@ def main():
for attr in models[i].attributes(name):
print(f" {name}.{attr} {param_info(name, attr)}")
- aggregate = args.aggregate_init
- for event in args.event:
-
- event_normalizer = lambda p: p
- if "/" in event:
- v1, v2 = event.split("/")
- if dfatool.utils.is_numeric(v1):
- event = v2.strip()
- event_normalizer = lambda p: dfatool.utils.soft_cast_float(v1) / p
- elif dfatool.utils.is_numeric(v2):
- event = v1.strip()
- event_normalizer = lambda p: p / dfatool.utils.soft_cast_float(v2)
- else:
- raise RuntimeError(f"Cannot parse '{event}'")
-
- nn, param = event.split("(")
- name, action = nn.split(".")
- param_model = None
- ref_model = None
-
- for model in models:
- if name in model.names and action in model.attributes(name):
- ref_model = model
- if args.use_lut:
- param_model = model.get_param_lut(allow_none=True)
- else:
- param_model, param_info = model.get_fitted()
- break
-
- if param_model is None:
- raise RuntimeError(f"Did not find a model for {name}.{action}")
-
- param = param.removesuffix(")")
- if param == "":
- param = dict()
- else:
- param = dfatool.utils.parse_conf_str(param)
-
- param_list = dfatool.utils.param_dict_to_list(param, ref_model.parameters)
-
- if not args.use_lut and not param_info(name, action).is_predictable(param_list):
- logging.warning(
- f"Cannot predict {name}.{action}({param}), falling back to static model"
- )
-
- try:
- event_output = event_normalizer(
- param_model(
- name,
- action,
- param=param_list,
- )
- )
- except KeyError:
- logging.error(f"Cannot predict {name}.{action}({param}) from LUT model")
- raise
-
- if args.aggregate == "sum":
- aggregate += event_output
+ workload = Workload(models)
+ aggregate = workload.eval_strs(
+ args.event,
+ aggregate=args.aggregate,
+ aggregate_init=args.aggregate_init,
+ use_lut=args.use_lut,
+ )
if args.normalize_output:
sf = dfatool.cli.parse_shift_function(
diff --git a/lib/workload.py b/lib/workload.py
new file mode 100644
index 0000000..3e4f1f8
--- /dev/null
+++ b/lib/workload.py
@@ -0,0 +1,77 @@
+#!/usr/bin/env python3
+
+import logging
+from . import utils
+
+logger = logging.getLogger(__name__)
+
+
+class Workload:
+ def __init__(self, models):
+ self.models = models
+
+ def _event_normalizer(self, event):
+ event_normalizer = lambda p: p
+ if "/" in event:
+ v1, v2 = event.split("/")
+ if utils.is_numeric(v1):
+ event = v2.strip()
+ event_normalizer = lambda p: utils.soft_cast_float(v1) / p
+ elif utils.is_numeric(v2):
+ event = v1.strip()
+ event_normalizer = lambda p: p / utils.soft_cast_float(v2)
+ else:
+ raise RuntimeError(f"Cannot parse '{event}'")
+ return event, event_normalizer
+
+ def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False):
+ for event in events:
+ event, event_normalizer = self._event_normalizer(event)
+ nn, param = event.split("(")
+ name, action = nn.split(".")
+ param_model = None
+ ref_model = None
+
+ for model in self.models:
+ if name in model.names and action in model.attributes(name):
+ ref_model = model
+ if use_lut:
+ param_model = model.get_param_lut(allow_none=True)
+ else:
+ param_model, param_info = model.get_fitted()
+ break
+
+ if param_model is None:
+ raise RuntimeError(f"Did not find a model for {name}.{action}")
+
+ param = param.removesuffix(")")
+ if param == "":
+ param = dict()
+ else:
+ param = utils.parse_conf_str(param)
+
+ param_list = utils.param_dict_to_list(param, ref_model.parameters)
+
+ if not use_lut and not param_info(name, action).is_predictable(param_list):
+ logging.warning(
+ f"Cannot predict {name}.{action}({param}), falling back to static model"
+ )
+
+ try:
+ event_output = event_normalizer(
+ param_model(
+ name,
+ action,
+ param=param_list,
+ )
+ )
+ except KeyError:
+ logging.error(f"Cannot predict {name}.{action}({param}) from LUT model")
+ raise
+
+ if aggregate == "sum":
+ aggregate_init += event_output
+ else:
+ raise RuntimeError(f"Unknown aggregate type: {aggregate}")
+
+ return aggregate_init