summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-09-12 09:56:06 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2019-09-12 09:56:06 +0200
commitd109a57c8d461b9b094cc84cb2753865f04e42b1 (patch)
treed700bcf154f7241b3ce3375ac6512ae867157ab2
parentaf15bd8bcdb70de5dbf49fb0e785cda6da7e0bfc (diff)
add online model accuracy eval script
-rwxr-xr-xbin/eval-online-model-accuracy.py126
1 files changed, 126 insertions, 0 deletions
diff --git a/bin/eval-online-model-accuracy.py b/bin/eval-online-model-accuracy.py
new file mode 100755
index 0000000..3391d89
--- /dev/null
+++ b/bin/eval-online-model-accuracy.py
@@ -0,0 +1,126 @@
+#!/usr/bin/env python3
+"""
+Evaluate accuracy of online model for DFA/PTA traces.
+
+Usage:
+PYTHONPATH=lib bin/eval-online-model-accuracy.py [options] <pta/dfa definition>
+
+Options:
+--accounting=static_state|static_state_immediate|static_statetransition|static_statetransition_immedate
+ Select accounting method
+
+--depth=<depth> (default: 3)
+ Maximum number of function calls per run
+
+--sleep=<ms> (default: 0)
+ How long to sleep between simulated function calls.
+
+--trace-filter=<transition,transition,transition,...>[ <transition,transition,transition,...> ...]
+ Only consider traces whose beginning matches one of the provided transition sequences.
+ E.g. --trace-filter='init,foo init,bar' will only consider traces with init as first and foo or bar as second transition,
+ and --trace-filter='init,foo,$ init,bar,$' will only consider the traces init -> foo and init -> bar.
+"""
+
+import getopt
+import json
+import re
+import runner
+import sys
+import time
+import io
+import yaml
+from aspectc import Repo
+from automata import PTA
+from codegen import *
+from harness import OnboardTimerHarness
+from dfatool import regression_measures
+
+opt = dict()
+
+if __name__ == '__main__':
+
+ try:
+ optspec = (
+ 'accounting= '
+ 'arch= '
+ 'app= '
+ 'depth= '
+ 'dummy= '
+ 'instance= '
+ 'repeat= '
+ 'run= '
+ 'sleep= '
+ 'timer-pin= '
+ 'trace-filter= '
+ )
+ raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
+
+ for option, parameter in raw_opts:
+ optname = re.sub(r'^--', '', option)
+ opt[optname] = parameter
+
+ if 'depth' in opt:
+ opt['depth'] = int(opt['depth'])
+ else:
+ opt['depth'] = 3
+
+ if 'sleep' in opt:
+ opt['sleep'] = int(opt['sleep'])
+ else:
+ opt['sleep'] = 0
+
+ if 'trace-filter' in opt:
+ trace_filter = []
+ for trace in opt['trace-filter'].split():
+ trace_filter.append(trace.split(','))
+ opt['trace-filter'] = trace_filter
+ else:
+ opt['trace-filter'] = None
+
+ except getopt.GetoptError as err:
+ print(err)
+ sys.exit(2)
+
+ modelfile = args[0]
+
+ with open(modelfile, 'r') as f:
+ if '.json' in modelfile:
+ pta = PTA.from_json(json.load(f))
+ else:
+ pta = PTA.from_yaml(yaml.safe_load(f))
+
+ enum = dict()
+ if '.json' not in modelfile:
+ with open(modelfile, 'r') as f:
+ driver_definition = yaml.safe_load(f)
+ if 'dummygen' in driver_definition and 'enum' in driver_definition['dummygen']:
+ enum = driver_definition['dummygen']['enum']
+
+ repo = Repo('/home/derf/var/projects/multipass/build/repo.acp')
+
+ pta.set_random_energy_model()
+
+ runs = list(pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter'], sleep = opt['sleep']))
+
+ num_transitions = len(runs)
+
+ if len(runs) == 0:
+ print('DFS returned no traces -- perhaps your trace-filter is too restrictive?', file=sys.stderr)
+ sys.exit(1)
+
+ real_energies = list()
+ real_durations = list()
+ model_energies = list()
+ for run in runs:
+ accounting_method = get_simulated_accountingmethod(opt['accounting'])(pta, 1e6, 'uint32_t', 'uint32_t', 'uint32_t', 'uint32_t')
+ real_energy, real_duration, _, _ = pta.simulate(run, accounting = accounting_method)
+ model_energy = accounting_method.get_energy()
+ real_energies.append(real_energy)
+ real_durations.append(real_duration)
+ model_energies.append(model_energy)
+ print('actual energy {:.0f} µJ, modeled energy {:.0f} µJ'.format(real_energy / 1e6, model_energy / 1e6))
+
+ measures = regression_measures(np.array(model_energies), np.array(real_energies))
+ print('SMAPE {:.0f}%, MAE {}'.format(measures['smape'], measures['mae']))
+
+ sys.exit(0)