1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#include <avr/io.h>
#include <stdlib.h>
#include "storage.h"
Storage storage;
/*
* EEPROM data structure ("file system"):
*
* Organized as 64B-pages, all animations/texts are page-aligned. Byte 0 ..
* 255 : storage metadata. Byte 0 contains the number of animations, byte 1 the
* page offset of the first animation, byte 2 of the second, and so on.
* Byte 256+: texts/animations without additional storage metadata, aligned
* to 64B. So, a maximum of 256-(256/64) = 252 texts/animations can be stored,
* and a maximum of 255 * 64 = 16320 Bytes (almost 16 kB / 128 kbit) can be
* addressed. To support larger EEPROMS, change the metadate area to Byte 2 ..
* 511 and use 16bit page pointers.
*
* The text/animation size is not limited by this approach.
*
* Example:
* Byte 0 = 3 -> we've got a total of three animations
* Byte 1 = 4 -> first text/animation starts at byte 64*4 = 256
* Byte 2 = 8 -> second starts at byte 64*8 = 512
* Byte 3 = 9 -> third starts at 64*9 * 576
* Byte 4 = whatever
* .
* .
* .
* Byte 256ff = first text/animation. Has a header encoding its length in bytes.
* Byte 512ff = second
* Byte 576ff = third
* .
* .
* .
*/
void Storage::enable()
{
/*
* Set I2C clock frequency to 100kHz.
* freq = F_CPU / (16 + (2 * TWBR * TWPS) )
* let TWPS = "00" = 1
* -> TWBR = (F_CPU / 100000) - 16 / 2
*/
TWSR = 0; // the lower two bits control TWPS
TWBR = ((F_CPU / 100000UL) - 16) / 2;
i2c_read(0, 1, &num_anims);
}
/*
* Send an I2C (re)start condition and the EEPROM address in read mode. Returns
* after it has been transmitted successfully.
*/
void Storage::i2c_start_read()
{
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
// Note: The R byte ("... | 1") causes the TWI momodule to switch to
// Master Receive mode
TWDR = (I2C_EEPROM_ADDR << 1) | 1;
TWCR = _BV(TWINT) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
}
/*
* Send an I2C (re)start condition and the EEPROM address in write mode.
* Returns after it has been transmitted successfully.
*/
void Storage::i2c_start_write()
{
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
TWDR = (I2C_EEPROM_ADDR << 1) | 0;
TWCR = _BV(TWINT) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
}
/*
* Send an I2C stop condition.
*/
void Storage::i2c_stop()
{
TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN);
}
/*
* Sends len bytes to the EEPROM. Note that this method does NOT
* send I2C start or stop conditions.
*/
// TODO Everything[tm] (error handling and generic code)
int8_t Storage::i2c_send(uint8_t len, uint8_t *data)
{
uint8_t pos = 0;
for (pos = 0; pos < len; pos++) {
TWDR = data[pos];
TWCR = _BV(TWINT) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
}
return pos + 1;
}
/*
* Receives len bytes from the EEPROM into data. Note that this method does
* NOT send I2C start or stop conditions.
*/
// TODO dito
int8_t Storage::i2c_receive(uint8_t len, uint8_t *data)
{
uint8_t pos = 0;
for (pos = 0; pos < len; pos++) {
if (pos == len-1) {
// Don't ACK the last byte
TWCR = _BV(TWINT) | _BV(TWEN);
} else {
// Automatically send ACK
TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWEA);
}
while (!(TWCR & _BV(TWINT)));
data[pos] = TWDR;
}
return pos + 1;
}
/*
* Writes len bytes of data into the EEPROM, starting at byte number pos.
* Does not check for page boundaries yet.
* Includes a complete I2C transaction.
*/
int8_t Storage::i2c_write(uint16_t pos, uint8_t len, uint8_t *data)
{
uint8_t addr_buf[2];
addr_buf[0] = pos >> 8;
addr_buf[1] = pos & 0xff;
i2c_start_write();
i2c_send(2, addr_buf);
i2c_send(len, data);
i2c_stop();
return 0; // TODO proper return code to indicate write errors
}
/*
* Reads len bytes of data from the EEPROM, starting at byte number pos.
* Does not check for page boundaries yet.
* Includes a complete I2C transaction.
*/
int8_t Storage::i2c_read(uint16_t pos, uint8_t len, uint8_t *data)
{
uint8_t addr_buf[2];
addr_buf[0] = pos >> 8;
addr_buf[1] = pos & 0xff;
i2c_start_write();
i2c_send(2, addr_buf);
i2c_start_read();
i2c_receive(len, data);
i2c_stop();
return 0; // TODO proper return code to indicate read/write errors
}
void Storage::reset()
{
first_free_page = 0;
num_anims = 0;
i2c_write(0, 1, &num_anims);
}
void Storage::load(uint16_t idx, uint8_t *data)
{
uint8_t page_offset;
uint8_t header[2];
i2c_read(1 + idx, 1, &page_offset);
i2c_read(256 + (64 * (uint16_t)page_offset), 2, header);
i2c_read(256 + (64 * (uint16_t)page_offset) + 2, (header[0] << 4) + (header[1] >> 4), data);
}
void Storage::save(uint8_t *data)
{
num_anims++;
i2c_write(0, 1, &num_anims);
i2c_write(num_anims, 1, &first_free_page);
append(data);
}
void Storage::append(uint8_t *data)
{
// the header indicates the length of the data, but we really don't care
// - it's easier to just write the whole page and skip the trailing
// garbage when reading.
i2c_write(256 + (64 * (uint16_t)first_free_page), 64, data);
first_free_page++;
}
|