summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBirte Kristina Friesel <birte.friesel@uos.de>2025-06-05 10:46:49 +0200
committerBirte Kristina Friesel <birte.friesel@uos.de>2025-06-05 10:46:49 +0200
commit1eebb326bf29c00464dbecf6573b219a788e23c3 (patch)
tree71831610c1c5f536021e1bdad727e25dc00771a3
parent95f4ed18da0cc168acfb2924eb1344298c07b779 (diff)
move (still very PoC) behaviour model learner from analyze-trace to behaviour.py
-rwxr-xr-xbin/analyze-trace.py196
-rw-r--r--lib/behaviour.py200
2 files changed, 207 insertions, 189 deletions
diff --git a/bin/analyze-trace.py b/bin/analyze-trace.py
index 2186951..f721876 100755
--- a/bin/analyze-trace.py
+++ b/bin/analyze-trace.py
@@ -11,6 +11,7 @@ import dfatool.cli
import dfatool.plotter
import dfatool.utils
import dfatool.functions as df
+from dfatool.behaviour import SDKBehaviourModel
from dfatool.loader import Logfile
from dfatool.model import AnalyticModel
from dfatool.validation import CrossValidator
@@ -34,179 +35,6 @@ def parse_logfile(filename):
return loader.load(f, is_trace=True)
-def learn_pta(observations, annotation, delta=dict(), delta_param=dict()):
- prev_i = annotation.start.offset
- prev = "__init__"
- prev_non_kernel = prev
- meta_observations = list()
- n_seen = dict()
-
- total_latency_us = 0
-
- if annotation.kernels:
- # ggf. als dict of tuples, für den Fall dass Schleifen verschieden iterieren können?
- for i in range(prev_i, annotation.kernels[0].offset):
- this = observations[i]["name"] + " @ " + observations[i]["place"]
-
- if this in n_seen:
- if n_seen[this] == 1:
- logging.debug(
- f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
- )
- n_seen[this] += 1
- else:
- n_seen[this] = 1
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add(this)
-
- # annotation.start.param may be incomplete, for instance in cases
- # where DPUs are allocated before the input file is loadeed (and
- # thus before the problem size is known).
- # Hence, we must use annotation.end.param whenever we deal
- # with possibly problem size-dependent behaviour.
- if not (prev, this) in delta_param:
- delta_param[(prev, this)] = set()
- delta_param[(prev, this)].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- prev = this
- prev_i = i + 1
-
- total_latency_us += observations[i]["attribute"].get("latency_us", 0)
-
- meta_observations.append(
- {
- "name": f"__trace__ {this}",
- "param": annotation.end.param,
- "attribute": dict(
- filter(
- lambda kv: not kv[0].startswith("e_"),
- observations[i]["param"].items(),
- )
- ),
- }
- )
- prev_non_kernel = prev
-
- for kernel in annotation.kernels:
- prev = prev_non_kernel
- for i in range(prev_i, kernel.offset):
- this = observations[i]["name"] + " @ " + observations[i]["place"]
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add(this)
-
- if not (prev, this) in delta_param:
- delta_param[(prev, this)] = set()
- delta_param[(prev, this)].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- # The last iteration (next block) contains a single kernel,
- # so we do not increase total_latency_us here.
- # However, this means that we will only ever get one latency
- # value for each set of kernels with a common problem size,
- # despite potentially having far more data at our fingertips.
- # We could provide one total_latency_us for each kernel
- # (by combining start latency + kernel latency + teardown latency),
- # but for that we first need to distinguish between kernel
- # components and teardown components in the following block.
-
- prev = this
- prev_i = i + 1
-
- meta_observations.append(
- {
- "name": f"__trace__ {this}",
- "param": annotation.end.param,
- "attribute": dict(
- filter(
- lambda kv: not kv[0].startswith("e_"),
- observations[i]["param"].items(),
- )
- ),
- }
- )
-
- # There is no kernel end signal in the underlying data, so the last iteration also contains a kernel run.
- prev = prev_non_kernel
- for i in range(prev_i, annotation.end.offset):
- this = observations[i]["name"] + " @ " + observations[i]["place"]
-
- if this in n_seen:
- if n_seen[this] == 1:
- logging.debug(
- f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
- )
- n_seen[this] += 1
- else:
- n_seen[this] = 1
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add(this)
-
- if not (prev, this) in delta_param:
- delta_param[(prev, this)] = set()
- delta_param[(prev, this)].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- total_latency_us += observations[i]["attribute"].get("latency_us", 0)
-
- prev = this
-
- meta_observations.append(
- {
- "name": f"__trace__ {this}",
- "param": annotation.end.param,
- "attribute": dict(
- filter(
- lambda kv: not kv[0].startswith("e_"),
- observations[i]["param"].items(),
- )
- ),
- }
- )
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add("__end__")
- if not (prev, "__end__") in delta_param:
- delta_param[(prev, "__end__")] = set()
- delta_param[(prev, "__end__")].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- for transition, count in n_seen.items():
- meta_observations.append(
- {
- "name": f"__loop__ {transition}",
- "param": annotation.end.param,
- "attribute": {"n_iterations": count},
- }
- )
-
- if total_latency_us:
- meta_observations.append(
- {
- "name": annotation.start.name,
- "param": annotation.end.param,
- "attribute": {"latency_us": total_latency_us},
- }
- )
-
- is_loop = dict(
- map(lambda kv: (kv[0], True), filter(lambda kv: kv[1] > 1, n_seen.items()))
- )
-
- return delta, delta_param, meta_observations, is_loop
-
-
def join_annotations(ref, base, new):
offset = len(ref)
return base + list(map(lambda x: x.apply_offset(offset), new))
@@ -243,22 +71,12 @@ def main():
map(parse_logfile, args.logfiles),
)
- delta_by_name = dict()
- delta_param_by_name = dict()
- is_loop = dict()
- for annotation in annotations:
- am_tt_param_names = sorted(annotation.start.param.keys())
- if annotation.name not in delta_by_name:
- delta_by_name[annotation.name] = dict()
- delta_param_by_name[annotation.name] = dict()
- _, _, meta_obs, _is_loop = learn_pta(
- observations,
- annotation,
- delta_by_name[annotation.name],
- delta_param_by_name[annotation.name],
- )
- observations += meta_obs
- is_loop.update(_is_loop)
+ bm = SDKBehaviourModel(observations, annotations)
+ observations += bm.meta_observations
+ is_loop = bm.is_loop
+ am_tt_param_names = bm.am_tt_param_names
+ delta_by_name = bm.delta_by_name
+ delta_param_by_name = bm.delta_param_by_name
def format_guard(guard):
return "∧".join(map(lambda kv: f"{kv[0]}={kv[1]}", guard))
diff --git a/lib/behaviour.py b/lib/behaviour.py
index 1e59d20..156da5f 100644
--- a/lib/behaviour.py
+++ b/lib/behaviour.py
@@ -6,6 +6,206 @@ from . import utils
logger = logging.getLogger(__name__)
+class SDKBehaviourModel:
+
+ def __init__(self, observations, annotations):
+
+ meta_observations = list()
+ delta_by_name = dict()
+ delta_param_by_name = dict()
+ is_loop = dict()
+
+ for annotation in annotations:
+ am_tt_param_names = sorted(annotation.start.param.keys())
+ if annotation.name not in delta_by_name:
+ delta_by_name[annotation.name] = dict()
+ delta_param_by_name[annotation.name] = dict()
+ _, _, meta_obs, _is_loop = self.learn_pta(
+ observations,
+ annotation,
+ delta_by_name[annotation.name],
+ delta_param_by_name[annotation.name],
+ )
+ meta_observations += meta_obs
+ is_loop.update(_is_loop)
+
+ self.am_tt_param_names = am_tt_param_names
+ self.delta_by_name = delta_by_name
+ self.delta_param_by_name = delta_param_by_name
+ self.meta_observations = meta_observations
+ self.is_loop = is_loop
+
+ def learn_pta(self, observations, annotation, delta=dict(), delta_param=dict()):
+ prev_i = annotation.start.offset
+ prev = "__init__"
+ prev_non_kernel = prev
+ meta_observations = list()
+ n_seen = dict()
+
+ total_latency_us = 0
+
+ if annotation.kernels:
+ # ggf. als dict of tuples, für den Fall dass Schleifen verschieden iterieren können?
+ for i in range(prev_i, annotation.kernels[0].offset):
+ this = observations[i]["name"] + " @ " + observations[i]["place"]
+
+ if this in n_seen:
+ if n_seen[this] == 1:
+ logging.debug(
+ f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
+ )
+ n_seen[this] += 1
+ else:
+ n_seen[this] = 1
+
+ if not prev in delta:
+ delta[prev] = set()
+ delta[prev].add(this)
+
+ # annotation.start.param may be incomplete, for instance in cases
+ # where DPUs are allocated before the input file is loadeed (and
+ # thus before the problem size is known).
+ # Hence, we must use annotation.end.param whenever we deal
+ # with possibly problem size-dependent behaviour.
+ if not (prev, this) in delta_param:
+ delta_param[(prev, this)] = set()
+ delta_param[(prev, this)].add(
+ utils.param_dict_to_str(annotation.end.param)
+ )
+
+ prev = this
+ prev_i = i + 1
+
+ total_latency_us += observations[i]["attribute"].get("latency_us", 0)
+
+ meta_observations.append(
+ {
+ "name": f"__trace__ {this}",
+ "param": annotation.end.param,
+ "attribute": dict(
+ filter(
+ lambda kv: not kv[0].startswith("e_"),
+ observations[i]["param"].items(),
+ )
+ ),
+ }
+ )
+ prev_non_kernel = prev
+
+ for kernel in annotation.kernels:
+ prev = prev_non_kernel
+ for i in range(prev_i, kernel.offset):
+ this = observations[i]["name"] + " @ " + observations[i]["place"]
+
+ if not prev in delta:
+ delta[prev] = set()
+ delta[prev].add(this)
+
+ if not (prev, this) in delta_param:
+ delta_param[(prev, this)] = set()
+ delta_param[(prev, this)].add(
+ utils.param_dict_to_str(annotation.end.param)
+ )
+
+ # The last iteration (next block) contains a single kernel,
+ # so we do not increase total_latency_us here.
+ # However, this means that we will only ever get one latency
+ # value for each set of kernels with a common problem size,
+ # despite potentially having far more data at our fingertips.
+ # We could provide one total_latency_us for each kernel
+ # (by combining start latency + kernel latency + teardown latency),
+ # but for that we first need to distinguish between kernel
+ # components and teardown components in the following block.
+
+ prev = this
+ prev_i = i + 1
+
+ meta_observations.append(
+ {
+ "name": f"__trace__ {this}",
+ "param": annotation.end.param,
+ "attribute": dict(
+ filter(
+ lambda kv: not kv[0].startswith("e_"),
+ observations[i]["param"].items(),
+ )
+ ),
+ }
+ )
+
+ # There is no kernel end signal in the underlying data, so the last iteration also contains a kernel run.
+ prev = prev_non_kernel
+ for i in range(prev_i, annotation.end.offset):
+ this = observations[i]["name"] + " @ " + observations[i]["place"]
+
+ if this in n_seen:
+ if n_seen[this] == 1:
+ logging.debug(
+ f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
+ )
+ n_seen[this] += 1
+ else:
+ n_seen[this] = 1
+
+ if not prev in delta:
+ delta[prev] = set()
+ delta[prev].add(this)
+
+ if not (prev, this) in delta_param:
+ delta_param[(prev, this)] = set()
+ delta_param[(prev, this)].add(utils.param_dict_to_str(annotation.end.param))
+
+ total_latency_us += observations[i]["attribute"].get("latency_us", 0)
+
+ prev = this
+
+ meta_observations.append(
+ {
+ "name": f"__trace__ {this}",
+ "param": annotation.end.param,
+ "attribute": dict(
+ filter(
+ lambda kv: not kv[0].startswith("e_"),
+ observations[i]["param"].items(),
+ )
+ ),
+ }
+ )
+
+ if not prev in delta:
+ delta[prev] = set()
+ delta[prev].add("__end__")
+ if not (prev, "__end__") in delta_param:
+ delta_param[(prev, "__end__")] = set()
+ delta_param[(prev, "__end__")].add(
+ utils.param_dict_to_str(annotation.end.param)
+ )
+
+ for transition, count in n_seen.items():
+ meta_observations.append(
+ {
+ "name": f"__loop__ {transition}",
+ "param": annotation.end.param,
+ "attribute": {"n_iterations": count},
+ }
+ )
+
+ if total_latency_us:
+ meta_observations.append(
+ {
+ "name": annotation.start.name,
+ "param": annotation.end.param,
+ "attribute": {"latency_us": total_latency_us},
+ }
+ )
+
+ is_loop = dict(
+ map(lambda kv: (kv[0], True), filter(lambda kv: kv[1] > 1, n_seen.items()))
+ )
+
+ return delta, delta_param, meta_observations, is_loop
+
+
class EventSequenceModel:
def __init__(self, models):
self.models = models