diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2022-01-06 08:10:40 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2022-01-06 08:10:40 +0100 |
commit | 30792ce0630d8f0768379d8e7e0b8556fbfa9894 (patch) | |
tree | b17ae9e88dfb3d8ad74bf48b4ac21c8f7e638764 | |
parent | 063858aadafc168e17ac87a9687ece2cd6fe5519 (diff) |
add preliminary xgboost support
-rw-r--r-- | lib/functions.py | 2 | ||||
-rw-r--r-- | lib/model.py | 6 | ||||
-rw-r--r-- | lib/parameters.py | 20 |
3 files changed, 27 insertions, 1 deletions
diff --git a/lib/functions.py b/lib/functions.py index 5358d8e..f4e1709 100644 --- a/lib/functions.py +++ b/lib/functions.py @@ -443,7 +443,7 @@ class SKLearnRegressionFunction(ModelFunction): for i, param in enumerate(param_list): if not self.ignore_index[i]: actual_param_list.append(param) - return self.regressor.predict([actual_param_list]) + return self.regressor.predict(np.array([actual_param_list])) class AnalyticFunction(ModelFunction): diff --git a/lib/model.py b/lib/model.py index e84e680..1270cf6 100644 --- a/lib/model.py +++ b/lib/model.py @@ -160,6 +160,7 @@ class AnalyticModel: with_sklearn_cart = bool( int(os.getenv("DFATOOL_DTREE_SKLEARN_CART", "0")) ) + with_xgboost = bool(int(os.getenv("DFATOOL_USE_XGBOOST", "0"))) loss_ignore_scalar = bool( int(os.getenv("DFATOOL_DTREE_LOSS_IGNORE_SCALAR", "0")) ) @@ -173,6 +174,7 @@ class AnalyticModel: with_function_leaves=with_function_leaves, with_nonbinary_nodes=with_nonbinary_nodes, with_sklearn_cart=with_sklearn_cart, + with_xgboost=with_xgboost, loss_ignore_scalar=loss_ignore_scalar, ) self.fit_done = True @@ -324,6 +326,7 @@ class AnalyticModel: with_sklearn_cart = bool( int(os.getenv("DFATOOL_DTREE_SKLEARN_CART", "0")) ) + with_xgboost = bool(int(os.getenv("DFATOOL_USE_XGBOOST", "0"))) loss_ignore_scalar = bool( int(os.getenv("DFATOOL_DTREE_LOSS_IGNORE_SCALAR", "0")) ) @@ -344,6 +347,7 @@ class AnalyticModel: with_function_leaves=with_function_leaves, with_nonbinary_nodes=with_nonbinary_nodes, with_sklearn_cart=with_sklearn_cart, + with_xgboost=with_xgboost, loss_ignore_scalar=loss_ignore_scalar, ) else: @@ -423,6 +427,7 @@ class AnalyticModel: with_function_leaves=False, with_nonbinary_nodes=True, with_sklearn_cart=False, + with_xgboost=False, loss_ignore_scalar=False, ): @@ -445,6 +450,7 @@ class AnalyticModel: with_function_leaves=with_function_leaves, with_nonbinary_nodes=with_nonbinary_nodes, with_sklearn_cart=with_sklearn_cart, + with_xgboost=with_xgboost, loss_ignore_scalar=loss_ignore_scalar, threshold=threshold, ) diff --git a/lib/parameters.py b/lib/parameters.py index 38e36b2..ca28cbb 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -876,6 +876,7 @@ class ModelAttribute: with_function_leaves=False, with_nonbinary_nodes=True, with_sklearn_cart=False, + with_xgboost=False, loss_ignore_scalar=False, threshold=100, ): @@ -908,6 +909,25 @@ class ModelAttribute: ) return + if with_xgboost: + from xgboost import XGBRegressor + + # TODO retrieve parameters from env + xgb = XGBRegressor( + n_estimators=100, + max_depth=10, + eta=0.2, + subsample=0.7, + gamma=0.01, + alpha=0.0006, + ) + fit_parameters, ignore_index = param_to_ndarray(parameters, with_nan=False) + xgb.fit(fit_parameters, data) + self.model_function = df.SKLearnRegressionFunction( + np.mean(data), xgb, ignore_index + ) + return + if loss_ignore_scalar and not with_function_leaves: logger.warning( "build_dtree called with loss_ignore_scalar=True, with_function_leaves=False. This does not make sense." |