diff options
author | Birte Kristina Friesel <birte.friesel@uos.de> | 2023-12-07 16:26:25 +0100 |
---|---|---|
committer | Birte Kristina Friesel <birte.friesel@uos.de> | 2023-12-07 16:26:25 +0100 |
commit | c01597f95b593d3cdb75e0163a39e00765791aa0 (patch) | |
tree | 628cd842360ec0e6c65de40e63366b6c2a5ae58d | |
parent | ba0edb7706a29d0a8986e492243d1d6a4540434b (diff) |
more debug output
-rw-r--r-- | lib/utils.py | 10 | ||||
-rw-r--r-- | lib/validation.py | 4 |
2 files changed, 13 insertions, 1 deletions
diff --git a/lib/utils.py b/lib/utils.py index ed5aa14..69e807c 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -209,6 +209,10 @@ def param_to_ndarray( distinct_values = dict() category_to_scalar = dict() + logger.debug( + f"converting param_to_ndarray(with_nan={with_nan}, categorial_to_scalar={categorial_to_scalar}, ignore_indexes={ignore_indexes})" + ) + for param_tuple in param_tuples: for i, param in enumerate(param_tuple): if not is_numeric(param): @@ -336,7 +340,11 @@ def observation_dict_to_by_name(observation): assert parameter_names == sorted(parameter_names) for name in by_name: for entry in by_name[name]["param"]: - assert len(entry) == len(parameter_names) + if len(entry) != len(parameter_names): + logger.error( + f"by_name[{name}] has an entry with {len(entry)} parameters. I expect {len(parameter_names)} parameters." + ) + assert len(entry) == len(parameter_names) for attribute in by_name[name]["attributes"]: by_name[name][attribute] = np.array(by_name[name][attribute]) return by_name, parameter_names diff --git a/lib/validation.py b/lib/validation.py index 8552ca5..3fc5c1a 100644 --- a/lib/validation.py +++ b/lib/validation.py @@ -288,18 +288,22 @@ class CrossValidator: for idx in validation_subset: validation[name]["param"].append(self.by_name[name]["param"][idx]) + logger.debug("Creating training model instance") kwargs = self.kwargs.copy() if static: kwargs["force_tree"] = False training_data = self.model_class( training, self.parameters, *self.args, **kwargs ) + logger.debug("Building trainig model") training_model = model_getter(training_data) kwargs = self.kwargs.copy() kwargs["compute_stats"] = False kwargs["force_tree"] = False + logger.debug("Creating validation model instance") validation_data = self.model_class( validation, self.parameters, *self.args, **kwargs ) + logger.debug("Done") return training_data, validation_data.assess(training_model, return_raw=True) |