summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBirte Kristina Friesel <birte.friesel@uos.de>2024-01-18 15:53:07 +0100
committerBirte Kristina Friesel <birte.friesel@uos.de>2024-01-18 15:53:07 +0100
commitf4cd1ae0e118b1975b8400ca4047a1d5ca7e20c1 (patch)
tree17688b2512b93fbcacf7c1f413c6a997b68caecd
parent2886cb1f2579742d84c017d647a9add045e5481e (diff)
Rename DFATOOL_{'' → ULS_}SKIP_CODEPENDENT_CHECK
-rw-r--r--README.md2
-rw-r--r--doc/modeling-method.md2
-rw-r--r--lib/parameters.py2
3 files changed, 3 insertions, 3 deletions
diff --git a/README.md b/README.md
index 3cb2277..2e682c9 100644
--- a/README.md
+++ b/README.md
@@ -120,7 +120,7 @@ The following variables may be set to alter the behaviour of dfatool components.
| `DFATOOL_CART_MAX_DEPTH` | **0** .. *n* | maximum depth for sklearn CART. Default (0): unlimited. |
| `DFATOOL_ULS_ERROR_METRIC` | **rmsd**, mae, p50, p90 | Error metric to use when selecting best-fitting function during unsupervised least squares (ULS) regression. Least squares regression itself minimzes root mean square deviation (rmsd), hence rmsd is the default. |
| `DFATOOL_ULS_MIN_DISTINCT_VALUES` | 2 .. **3** .. *n* | Minimum number of unique values a parameter must take to be eligible for ULS |
-| `DFATOOL_SKIP_CODEPENDENT_CHECK` | **0**, 1 | Do not detect and remove co-dependent features in ULS. |
+| `DFATOOL_ULS_SKIP_CODEPENDENT_CHECK` | **0**, 1 | Do not detect and remove co-dependent features in ULS. |
| `DFATOOL_USE_XGBOOST` | **0**, 1 | Use Extreme Gradient Boosting algorithm for decision forest generation. |
| `DFATOOL_XGB_N_ESTIMATORS` | 1 .. **100** .. *n* | Number of estimators (i.e., trees) for XGBoost. Mandatory. |
| `DFATOOL_XGB_MAX_DEPTH` | 2 .. **10** .. *n* | Maximum XGBoost tree depth. XGBoost default: 6 |
diff --git a/doc/modeling-method.md b/doc/modeling-method.md
index f369cc0..dab120e 100644
--- a/doc/modeling-method.md
+++ b/doc/modeling-method.md
@@ -41,7 +41,7 @@ All of these are valid regression model trees.
* `DFATOOL_FIT_LINEAR_ONLY=1` makes RMT behave more like LMT by only considering linear functions in leaf nodes.
* `DFATOOL_FIT_FOL=1`
* `DFATOOL_PARAM_CATEGORIAL_TO_SCALAR=1`
-* `DFATOOL_SKIP_CODEPENDENT_CHECK=1`
+* `DFATOOL_ULS_SKIP_CODEPENDENT_CHECK=1`
* `DFATOOL_REGRESSION_SAFE_FUNCTIONS=1`
##
diff --git a/lib/parameters.py b/lib/parameters.py
index b5bd53a..00ab70a 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -282,7 +282,7 @@ def codependent_param_dict(param_values):
if not len(param_values):
logger.warning("codependent_param_dict called with param_values=[]")
return dict()
- if bool(int(os.getenv("DFATOOL_SKIP_CODEPENDENT_CHECK", 0))):
+ if bool(int(os.getenv("DFATOOL_ULS_SKIP_CODEPENDENT_CHECK", 0))):
return dict()
lut = [dict() for i in param_values[0]]
for param_index in range(len(param_values[0])):