summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorBirte Kristina Friesel <birte.friesel@uos.de>2024-01-12 09:24:23 +0100
committerBirte Kristina Friesel <birte.friesel@uos.de>2024-01-12 09:24:23 +0100
commitc3043d8537e4dceb303929582dab92a6024924ce (patch)
tree952cf10ea377e45d56436c7282d6dd925774c720 /README.md
parent2cdc0ebc4a68d44dd6381d7fd473455f1d2f1b5d (diff)
Expose DFATOOL_ULS_MIN_DISTINCT_VALUES training hyper-parameter
Diffstat (limited to 'README.md')
-rw-r--r--README.md1
1 files changed, 1 insertions, 0 deletions
diff --git a/README.md b/README.md
index 6da4fcc..d168510 100644
--- a/README.md
+++ b/README.md
@@ -119,6 +119,7 @@ The following variables may be set to alter the behaviour of dfatool components.
| `DFATOOL_DTREE_LMT` | **0**, 1 | Use [Linear Model Tree](https://github.com/cerlymarco/linear-tree) algorithm for regression tree generation. Uses binary nodes and linear functions. Overrides `FUNCTION_LEAVES` (=0) and `NONBINARY_NODES` (=0). |
| `DFATOOL_CART_MAX_DEPTH` | **0** .. *n* | maximum depth for sklearn CART. Default (0): unlimited. |
| `DFATOOL_ULS_ERROR_METRIC` | **rmsd**, mae, p50, p90 | Error metric to use when selecting best-fitting function during unsupervised least squares (ULS) regression. Least squares regression itself minimzes root mean square deviation (rmsd), hence rmsd is the default. |
+| `DFATOOL_ULS_MIN_DISTINCT_VALUES` | 2 .. **3** .. *n* | Minimum number of unique values a parameter must take to be eligible for ULS |
| `DFATOOL_USE_XGBOOST` | **0**, 1 | Use Extreme Gradient Boosting algorithm for decision forest generation. |
| `DFATOOL_XGB_N_ESTIMATORS` | 1 .. **100** .. *n* | Number of estimators (i.e., trees) for XGBoost. Mandatory. |
| `DFATOOL_XGB_MAX_DEPTH` | 2 .. **10** .. *n* | Maximum XGBoost tree depth. XGBoost default: 6 |