summaryrefslogtreecommitdiff
path: root/bin/analyze-timing.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2021-02-26 16:02:19 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2021-02-26 16:02:19 +0100
commit32bcad3482781e7e2e42c5de10d938c1567b8390 (patch)
tree3bbb58740d04c789f549de50dce1f0cc2a45480d /bin/analyze-timing.py
parent21698b9915f02216a1afa5afb36b56f65f30b8ca (diff)
refactor param_info, show splits in analyze-archive output
Diffstat (limited to 'bin/analyze-timing.py')
-rwxr-xr-xbin/analyze-timing.py21
1 files changed, 8 insertions, 13 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index 1460dd3..4a11298 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -80,7 +80,7 @@ import re
import sys
from dfatool import plotter
from dfatool.loader import TimingData, pta_trace_to_aggregate
-from dfatool.functions import gplearn_to_function
+from dfatool.functions import gplearn_to_function, SplitInfo, AnalyticInfo
from dfatool.model import AnalyticModel
from dfatool.validation import CrossValidator
from dfatool.utils import filter_aggregate_by_param
@@ -387,9 +387,9 @@ if __name__ == "__main__":
].stats.arg_dependence_ratio(i),
)
)
- if info is not None:
- for param_name in sorted(info["fit_result"].keys(), key=str):
- param_fit = info["fit_result"][param_name]["results"]
+ if type(info) is AnalyticInfo:
+ for param_name in sorted(info.fit_result.keys(), key=str):
+ param_fit = info.fit_result[param_name]["results"]
for function_type in sorted(param_fit.keys()):
function_rmsd = param_fit[function_type]["rmsd"]
print(
@@ -405,19 +405,14 @@ if __name__ == "__main__":
if "param" in show_models or "all" in show_models:
for trans in model.names:
for attribute in ["duration"]:
- if param_info(trans, attribute):
+ info = param_info(trans, attribute)
+ if type(info) is AnalyticInfo:
print(
"{:10s}: {:10s}: {}".format(
- trans,
- attribute,
- param_info(trans, attribute)["function"].model_function,
- )
- )
- print(
- "{:10s} {:10s} {}".format(
- "", "", param_info(trans, attribute)["function"].model_args
+ trans, attribute, info.function.model_function
)
)
+ print("{:10s} {:10s} {}".format("", "", info.function.model_args))
if xv_method == "montecarlo":
analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)