summaryrefslogtreecommitdiff
path: root/bin/eval-outlier-removal.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-02-08 10:15:09 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-02-08 10:15:40 +0100
commit2db31a8adac549f2bdc1d2c204b16bc2f815eff3 (patch)
tree7a338d405e5f9a338c0ee0fa1afbd8b4283a7c5d /bin/eval-outlier-removal.py
parent2b479dc993b1d73d236d96a4d57bb69159b1603e (diff)
Convert PTAModel to EnergyModel signature
outlier detection / removal is not supported at the moment.
Diffstat (limited to 'bin/eval-outlier-removal.py')
-rwxr-xr-xbin/eval-outlier-removal.py152
1 files changed, 152 insertions, 0 deletions
diff --git a/bin/eval-outlier-removal.py b/bin/eval-outlier-removal.py
new file mode 100755
index 0000000..b6e8733
--- /dev/null
+++ b/bin/eval-outlier-removal.py
@@ -0,0 +1,152 @@
+#!/usr/bin/env python3
+
+import getopt
+import plotter
+import re
+import sys
+from dfatool import PTAModel, RawData, soft_cast_int, pta_trace_to_aggregate
+
+opts = {}
+
+def model_quality_table(result_lists, info_list):
+ for state_or_tran in result_lists[0].keys():
+ for key in result_lists[0][state_or_tran].keys():
+ buf = '{:20s} {:15s}'.format(state_or_tran, key)
+ for i, results in enumerate(result_lists):
+ info = info_list[i]
+ buf += ' ||| '
+ if info == None or info(state_or_tran, key):
+ result = results[state_or_tran][key]
+ if 'smape' in result:
+ buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
+ else:
+ buf += '{:6} {:9.0f}'.format('', result['mae'])
+ else:
+ buf += '{:6}----{:9}'.format('', '')
+ print(buf)
+
+def combo_model_quality_table(result_lists, info_list):
+ for state_or_tran in result_lists[0][0].keys():
+ for key in result_lists[0][0][state_or_tran].keys():
+ for sub_result_lists in result_lists:
+ buf = '{:20s} {:15s}'.format(state_or_tran, key)
+ for i, results in enumerate(sub_result_lists):
+ info = info_list[i]
+ buf += ' ||| '
+ if info == None or info(state_or_tran, key):
+ result = results[state_or_tran][key]
+ if 'smape' in result:
+ buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
+ else:
+ buf += '{:6} {:9.0f}'.format('', result['mae'])
+ else:
+ buf += '{:6}----{:9}'.format('', '')
+ print(buf)
+
+if __name__ == '__main__':
+
+ ignored_trace_indexes = []
+ discard_outliers = None
+
+ try:
+ raw_opts, args = getopt.getopt(sys.argv[1:], "",
+ 'plot ignored-trace-indexes= discard-outliers='.split(' '))
+
+ for option, parameter in raw_opts:
+ optname = re.sub(r'^--', '', option)
+ opts[optname] = parameter
+
+ if 'ignored-trace-indexes' in opts:
+ ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
+ if 0 in ignored_trace_indexes:
+ print('[E] arguments to --ignored-trace-indexes start from 1')
+
+ if 'discard-outliers' in opts:
+ discard_outliers = float(opts['discard-outliers'])
+
+ except getopt.GetoptError as err:
+ print(err)
+ sys.exit(2)
+
+ raw_data = RawData(args)
+
+ preprocessed_data = raw_data.get_preprocessed_data()
+ by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)
+ m1 = PTAModel(by_name, parameters, arg_count,
+ traces = preprocessed_data,
+ ignore_trace_indexes = ignored_trace_indexes)
+ m2 = PTAModel(by_name, parameters, arg_count,
+ traces = preprocessed_data,
+ ignore_trace_indexes = ignored_trace_indexes,
+ discard_outliers = discard_outliers)
+
+ print('--- simple static model ---')
+ static_m1 = m1.get_static()
+ static_m2 = m2.get_static()
+ #for state in model.states():
+ # print('{:10s}: {:.0f} µW ({:.2f})'.format(
+ # state,
+ # static_model(state, 'power'),
+ # model.generic_param_dependence_ratio(state, 'power')))
+ # for param in model.parameters():
+ # print('{:10s} dependence on {:15s}: {:.2f}'.format(
+ # '',
+ # param,
+ # model.param_dependence_ratio(state, 'power', param)))
+ #for trans in model.transitions():
+ # print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
+ # trans, static_model(trans, 'energy'),
+ # static_model(trans, 'rel_energy_prev'),
+ # static_model(trans, 'rel_energy_next'),
+ # model.generic_param_dependence_ratio(trans, 'energy'),
+ # model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
+ # model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
+ # print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
+ static_q1 = m1.assess(static_m1)
+ static_q2 = m2.assess(static_m2)
+ static_q12 = m1.assess(static_m2)
+
+ print('--- LUT ---')
+ lut_m1 = m1.get_param_lut()
+ lut_m2 = m2.get_param_lut()
+ lut_q1 = m1.assess(lut_m1)
+ lut_q2 = m2.assess(lut_m2)
+ lut_q12 = m1.assess(lut_m2)
+
+ print('--- param model ---')
+ param_m1, param_i1 = m1.get_fitted()
+ for state in m1.states():
+ for attribute in ['power']:
+ if param_i1(state, attribute):
+ print('{:10s}: {}'.format(state, param_i1(state, attribute)['function']._model_str))
+ print('{:10s} {}'.format('', param_i1(state, attribute)['function']._regression_args))
+ for trans in m1.transitions():
+ for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']:
+ if param_i1(trans, attribute):
+ print('{:10s}: {:10s}: {}'.format(trans, attribute, param_i1(trans, attribute)['function']._model_str))
+ print('{:10s} {:10s} {}'.format('', '', param_i1(trans, attribute)['function']._regression_args))
+ param_m2, param_i2 = m2.get_fitted()
+ for state in m2.states():
+ for attribute in ['power']:
+ if param_i2(state, attribute):
+ print('{:10s}: {}'.format(state, param_i2(state, attribute)['function']._model_str))
+ print('{:10s} {}'.format('', param_i2(state, attribute)['function']._regression_args))
+ for trans in m2.transitions():
+ for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']:
+ if param_i2(trans, attribute):
+ print('{:10s}: {:10s}: {}'.format(trans, attribute, param_i2(trans, attribute)['function']._model_str))
+ print('{:10s} {:10s} {}'.format('', '', param_i2(trans, attribute)['function']._regression_args))
+
+ analytic_q1 = m1.assess(param_m1)
+ analytic_q2 = m2.assess(param_m2)
+ analytic_q12 = m1.assess(param_m2)
+ model_quality_table([static_q1, analytic_q1, lut_q1], [None, param_i1, None])
+ model_quality_table([static_q2, analytic_q2, lut_q2], [None, param_i2, None])
+ model_quality_table([static_q12, analytic_q12, lut_q12], [None, param_i2, None])
+ combo_model_quality_table([
+ [static_q1, analytic_q1, lut_q1],
+ [static_q2, analytic_q2, lut_q2],
+ [static_q12, analytic_q12, lut_q12]],
+ [None, param_i1, None])
+
+ sys.exit(0)