summaryrefslogtreecommitdiff
path: root/bin/merge.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-04-29 13:01:31 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-04-29 13:01:31 +0200
commit36d02c1227374b107aa351388c0b5e3df65e4fa9 (patch)
tree14ccf8e77c2203a8ca775c1f1ffe9c7cc997c320 /bin/merge.py
parent4b79b253d268652a1ae7239b564aaff9c2871589 (diff)
Remove most unused perl scripts and modules
Diffstat (limited to 'bin/merge.py')
-rwxr-xr-xbin/merge.py1053
1 files changed, 0 insertions, 1053 deletions
diff --git a/bin/merge.py b/bin/merge.py
deleted file mode 100755
index 551bc9e..0000000
--- a/bin/merge.py
+++ /dev/null
@@ -1,1053 +0,0 @@
-#!/usr/bin/env python3
-
-import getopt
-import json
-import numpy as np
-import os
-import re
-import sys
-import plotter
-from copy import deepcopy
-from dfatool import aggregate_measures, regression_measures, is_numeric, powerset
-from dfatool import append_if_set, mean_or_none, float_or_nan
-from matplotlib.patches import Polygon
-from scipy import optimize, stats
-#import pickle
-
-opts = {}
-
-def load_json(filename):
- with open(filename, "r") as f:
- return json.load(f)
-
-def save_json(data, filename):
- with open(filename, "w") as f:
- return json.dump(data, f)
-
-def print_data(aggregate):
- for key in sorted(aggregate.keys()):
- data = aggregate[key]
- name, params = key
- print("%s @ %s : ~ = %.f (%.f, %.f) µ_σ_outer = %.f n = %d" %
- (name, params, np.median(data['means']), np.percentile(data['means'], 25),
- np.percentile(data['means'], 75), np.mean(data['stds']), len(data['means'])))
-
-def flatten(somelist):
- return [item for sublist in somelist for item in sublist]
-
-def mimosa_data(elem):
- means = [x['uW_mean'] for x in elem['offline']]
- durations = [x['us'] - 20 for x in elem['offline']]
- stds = [x['uW_std'] for x in elem['offline']]
- energies = [x['uW_mean'] * (x['us'] - 20) for x in elem['offline']]
- clips = [x['clip_rate'] for x in elem['offline']]
- substate_thresholds = []
- substate_data = []
- timeouts = []
- rel_energies_prev = []
- rel_energies_next = []
- if 'timeout' in elem['offline'][0]:
- timeouts = [x['timeout'] for x in elem['offline']]
- if 'uW_mean_delta_prev' in elem['offline'][0]:
- rel_energies_prev = [x['uW_mean_delta_prev'] * (x['us'] - 20) for x in elem['offline']]
- if 'uW_mean_delta_next' in elem['offline'][0]:
- rel_energies_next = [x['uW_mean_delta_next'] * (x['us'] - 20) for x in elem['offline']]
- for x in elem['offline']:
- if 'substates' in x:
- substate_thresholds.append(x['substates']['threshold'])
- substate_data.append(x['substates']['states'])
-
- return (means, stds, durations, energies, rel_energies_prev,
- rel_energies_next, clips, timeouts, substate_thresholds)
-
-def online_data(elem):
- means = [int(x['power']) for x in elem['online']]
- durations = [int(x['time']) for x in elem['online']]
-
- return means, durations
-
-# parameters = statistic variables such as txpower, bitrate etc.
-# variables = function variables/parameters set by linear regression
-def str_to_param_function(function_string, parameters, variables):
- rawfunction = function_string
- dependson = [False] * len(parameters)
-
- for i in range(len(parameters)):
- if rawfunction.find("global(%s)" % (parameters[i])) >= 0:
- dependson[i] = True
- rawfunction = rawfunction.replace("global(%s)" % (parameters[i]), "arg[%d]" % (i))
- if rawfunction.find("local(%s)" % (parameters[i])) >= 0:
- dependson[i] = True
- rawfunction = rawfunction.replace("local(%s)" % (parameters[i]), "arg[%d]" % (i))
- for i in range(len(variables)):
- rawfunction = rawfunction.replace("param(%d)" % (i), "param[%d]" % (i))
- fitfunc = eval("lambda param, arg: " + rawfunction);
-
- return fitfunc, dependson
-
-def mk_function_data(name, paramdata, parameters, dependson, datatype):
- X = [[] for i in range(len(parameters))]
- Xm = [[] for i in range(len(parameters))]
- Y = []
- Ym = []
-
- num_valid = 0
- num_total = 0
-
- for key, val in paramdata.items():
- if key[0] == name and len(key[1]) == len(parameters):
- valid = True
- num_total += 1
- for i in range(len(parameters)):
- if dependson[i] and not is_numeric(key[1][i]):
- valid = False
- if valid:
- num_valid += 1
- Y.extend(val[datatype])
- Ym.append(np.median(val[datatype]))
- for i in range(len(parameters)):
- if dependson[i] or is_numeric(key[1][i]):
- X[i].extend([float(key[1][i])] * len(val[datatype]))
- Xm[i].append(float(key[1][i]))
- else:
- X[i].extend([0] * len(val[datatype]))
- Xm[i].append(0)
-
- for i in range(len(parameters)):
- X[i] = np.array(X[i])
- Xm[i] = np.array(Xm[i])
- X = tuple(X)
- Xm = tuple(Xm)
- Y = np.array(Y)
- Ym = np.array(Ym)
-
- return X, Y, Xm, Ym, num_valid, num_total
-
-def raw_num0_8(num):
- return (8 - num1(num))
-
-def raw_num0_16(num):
- return (16 - num1(num))
-
-def raw_num1(num):
- return bin(int(num)).count("1")
-
-num0_8 = np.vectorize(raw_num0_8)
-num0_16 = np.vectorize(raw_num0_16)
-num1 = np.vectorize(raw_num1)
-
-def try_fits(name, datatype, paramidx, paramdata):
- functions = {
- 'linear' : lambda param, arg: param[0] + param[1] * arg,
- 'logarithmic' : lambda param, arg: param[0] + param[1] * np.log(arg),
- 'logarithmic1' : lambda param, arg: param[0] + param[1] * np.log(arg + 1),
- 'exponential' : lambda param, arg: param[0] + param[1] * np.exp(arg),
- #'polynomial' : lambda param, arg: param[0] + param[1] * arg + param[2] * arg ** 2,
- 'square' : lambda param, arg: param[0] + param[1] * arg ** 2,
- 'fractional' : lambda param, arg: param[0] + param[1] / arg,
- 'sqrt' : lambda param, arg: param[0] + param[1] * np.sqrt(arg),
- 'num0_8' : lambda param, arg: param[0] + param[1] * num0_8(arg),
- 'num0_16' : lambda param, arg: param[0] + param[1] * num0_16(arg),
- 'num1' : lambda param, arg: param[0] + param[1] * num1(arg),
- }
- results = dict([[key, []] for key in functions.keys()])
- errors = {}
-
- allvalues = [(*key[1][:paramidx], *key[1][paramidx+1:]) for key in paramdata.keys() if key[0] == name]
- allvalues = list(set(allvalues))
-
- for value in allvalues:
- X = []
- Xm = []
- Y = []
- Ym = []
- num_valid = 0
- num_total = 0
- for key, val in paramdata.items():
- if key[0] == name and len(key[1]) > paramidx and (*key[1][:paramidx], *key[1][paramidx+1:]) == value:
- num_total += 1
- if is_numeric(key[1][paramidx]):
- num_valid += 1
- Y.extend(val[datatype])
- Ym.append(np.median(val[datatype]))
- X.extend([float(key[1][paramidx])] * len(val[datatype]))
- Xm.append(float(key[1][paramidx]))
- if float(key[1][paramidx]) == 0:
- functions.pop('fractional', None)
- if float(key[1][paramidx]) <= 0:
- functions.pop('logarithmic', None)
- if float(key[1][paramidx]) < 0:
- functions.pop('logarithmic1', None)
- functions.pop('sqrt', None)
- if float(key[1][paramidx]) > 64:
- functions.pop('exponential', None)
-
- # there should be -at least- two values when fitting
- if num_valid > 1:
- Y = np.array(Y)
- Ym = np.array(Ym)
- X = np.array(X)
- Xm = np.array(Xm)
- for kind, function in functions.items():
- results[kind] = {}
- errfunc = lambda P, X, y: function(P, X) - y
- try:
- res = optimize.least_squares(errfunc, [0, 1], args=(X, Y), xtol=2e-15)
- measures = regression_measures(function(res.x, X), Y)
- for k, v in measures.items():
- if not k in results[kind]:
- results[kind][k] = []
- results[kind][k].append(v)
- except:
- pass
-
- for function_name, result in results.items():
- if len(result) > 0 and function_name in functions:
- errors[function_name] = {}
- for measure in result.keys():
- errors[function_name][measure] = np.mean(result[measure])
-
- return errors
-
-def fit_function(function, name, datatype, parameters, paramdata, xaxis=None, yaxis=None):
-
- variables = list(map(lambda x: float(x), function['params']))
- fitfunc, dependson = str_to_param_function(function['raw'], parameters, variables)
-
- X, Y, Xm, Ym, num_valid, num_total = mk_function_data(name, paramdata, parameters, dependson, datatype)
-
- if num_valid > 0:
-
- if num_valid != num_total:
- num_invalid = num_total - num_valid
- print("Warning: fit(%s): %d of %d states had incomplete parameter hashes" % (name, num_invalid, len(paramdata)))
-
- errfunc = lambda P, X, y: fitfunc(P, X) - y
- try:
- res = optimize.least_squares(errfunc, variables, args=(X, Y), xtol=2e-15) # loss='cauchy'
- except ValueError as err:
- function['error'] = str(err)
- return
- #x1 = optimize.curve_fit(lambda param, *arg: fitfunc(param, arg), X, Y, functionparams)
- measures = regression_measures(fitfunc(res.x, X), Y)
-
- if res.status <= 0:
- function['error'] = res.message
- return
-
- if 'fit' in opts:
- for i in range(len(parameters)):
- plotter.plot_param_fit(function['raw'], name, fitfunc, res.x, parameters, datatype, i, X, Y, xaxis, yaxis)
-
- function['params'] = list(res.x)
- function['fit'] = measures
-
- else:
- function['error'] = 'log contained no numeric parameters'
-
-def assess_function(function, name, datatype, parameters, paramdata):
-
- variables = list(map(lambda x: float(x), function['params']))
- fitfunc, dependson = str_to_param_function(function['raw'], parameters, variables)
- X, Y, Xm, Ym, num_valid, num_total = mk_function_data(name, paramdata, parameters, dependson, datatype)
-
- if num_valid > 0:
- return regression_measures(fitfunc(variables, X), Y)
- else:
- return None
-
-def xv_assess_function(name, funbase, what, validation, mae, smape):
- goodness = assess_function(funbase, name, what, parameters, validation)
- if goodness != None:
- if not name in mae:
- mae[name] = []
- if not name in smape:
- smape[name] = []
- append_if_set(mae, goodness, 'mae')
- append_if_set(smape, goodness, 'smape')
-
-def xv2_assess_function(name, funbase, what, validation, mae, smape, rmsd):
- goodness = assess_function(funbase, name, what, parameters, validation)
- if goodness != None:
- if goodness['mae'] < 10e9:
- mae.append(goodness['mae'])
- rmsd.append(goodness['rmsd'])
- smape.append(goodness['smape'])
- else:
- print('[!] Ignoring MAE of %d (SMAPE %.f)' % (goodness['mae'], goodness['smape']))
-
-# Returns the values used for each parameter in the measurement, e.g.
-# { 'txpower' : [1, 2, 4, 8], 'length' : [16] }
-# non-numeric values such as '' are skipped
-def param_values(parameters, by_param):
- paramvalues = dict([[param, set()] for param in parameters])
-
- for _, paramvalue in by_param.keys():
- for i, param in enumerate(parameters):
- if is_numeric(paramvalue[i]):
- paramvalues[param].add(paramvalue[i])
-
- return paramvalues
-
-def param_hash(values):
- ret = {}
-
- for i, param in enumerate(parameters):
- ret[param] = values[i]
-
- return ret
-
-# Returns the values used for each function argument in the measurement, e.g.
-# { 'data': [], 'length' : [16, 31, 32] }
-# non-numeric values such as '' or 'long_test_string' are skipped
-def arg_values(name, by_arg):
- TODO
- argvalues = dict([[arg, set()] for arg in parameters])
-
- for _, paramvalue in by_param.keys():
- for i, param in enumerate(parameters):
- if is_numeric(paramvalue[i]):
- paramvalues[param].add(paramvalue[i])
-
- return paramvalues
-
-def mk_param_key(elem):
- name = elem['name']
- paramtuple = ()
-
- if 'parameter' in elem:
- paramkeys = sorted(elem['parameter'].keys())
- paramtuple = tuple([elem['parameter'][x] for x in paramkeys])
-
- return (name, paramtuple)
-
-def mk_arg_key(elem):
- name = elem['name']
- argtuple = ()
-
- if 'args' in elem:
- argtuple = tuple(elem['args'])
-
- return (name, argtuple)
-
-def add_data_to_aggregate(aggregate, key, isa, data):
- if not key in aggregate:
- aggregate[key] = {
- 'isa' : isa,
- }
- for datakey in data.keys():
- aggregate[key][datakey] = []
- for datakey, dataval in data.items():
- aggregate[key][datakey].extend(dataval)
-
-def fake_add_data_to_aggregate(aggregate, key, isa, database, idx):
- timeout_val = []
- if len(database['timeouts']):
- timeout_val = [database['timeouts'][idx]]
- rel_energy_p_val = []
- if len(database['rel_energies_prev']):
- rel_energy_p_val = [database['rel_energies_prev'][idx]]
- rel_energy_n_val = []
- if len(database['rel_energies_next']):
- rel_energy_n_val = [database['rel_energies_next'][idx]]
- add_data_to_aggregate(aggregate, key, isa, {
- 'means' : [database['means'][idx]],
- 'stds' : [database['stds'][idx]],
- 'durations' : [database['durations'][idx]],
- 'energies' : [database['energies'][idx]],
- 'rel_energies_prev' : rel_energy_p_val,
- 'rel_energies_next' : rel_energy_n_val,
- 'clip_rate' : [database['clip_rate'][idx]],
- 'timeouts' : timeout_val,
- })
-
-def weight_by_name(aggdata):
- total = {}
- count = {}
- weight = {}
- for key in aggdata.keys():
- if not key[0] in total:
- total[key[0]] = 0
- total[key[0]] += len(aggdata[key]['means'])
- count[key] = len(aggdata[key]['means'])
- for key in aggdata.keys():
- weight[key] = float(count[key]) / total[key[0]]
- return weight
-
-# returns the mean standard deviation of all measurements of 'what'
-# (e.g. power consumption or timeout) for state/transition 'name' where
-# parameter 'index' is dynamic and all other parameters are fixed.
-# I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b', then
-# this function returns the mean of the standard deviations of (a=1, b=*, c=1),
-# (a=1, b=*, c=2), and so on
-def mean_std_by_param(data, keys, name, what, index):
- partitions = []
- for key in keys:
- partition = []
- for k, v in data.items():
- if (*k[1][:index], *k[1][index+1:]) == key and k[0] == name:
- partition.extend(v[what])
- partitions.append(partition)
- return np.mean([np.std(partition) for partition in partitions])
-
-def spearmanr_by_param(name, what, index):
- sr = stats.spearmanr(by_name[name][what], list(map(lambda x : float_or_nan(x[index]), by_name[name]['param'])))[0]
- if sr == np.nan:
- return None
- return sr
-
-# returns the mean standard deviation of all measurements of 'what'
-# (e.g. energy or duration) for transition 'name' where
-# the 'index'th argumetn is dynamic and all other arguments are fixed.
-# I.e., if arguments are a, b, c ∈ {1,2,3} and 'index' is 1, then
-# this function returns the mean of the standard deviations of (a=1, b=*, c=1),
-# (a=1, b=*, c=2), and so on
-def mean_std_by_arg(data, keys, name, what, index):
- return mean_std_by_param(data, keys, name, what, index)
-
-# returns the mean standard deviation of all measurements of 'what'
-# (e.g. power consumption or timeout) for state/transition 'name' where the
-# trace of previous transitions is fixed except for a single transition,
-# whose occurence or absence is silently ignored.
-# this is done separately for each transition (-> returns a dictionary)
-def mean_std_by_trace_part(data, transitions, name, what):
- ret = {}
- for transition in transitions:
- keys = set(map(lambda x : (x[0], x[1], tuple([y for y in x[2] if y != transition])), data.keys()))
- ret[transition] = {}
- partitions = []
- for key in keys:
- partition = []
- for k, v in data.items():
- key_without_transition = (k[0], k[1], tuple([y for y in k[2] if y != transition]))
- if key[0] == name and key == key_without_transition:
- partition.extend(v[what])
- if len(partition):
- partitions.append(partition)
- ret[transition] = np.mean([np.std(partition) for partition in partitions])
- return ret
-
-
-def load_run_elem(index, element, trace, by_name, by_arg, by_param, by_trace):
- means, stds, durations, energies, rel_energies_prev, rel_energies_next, clips, timeouts, sub_thresholds = mimosa_data(element)
-
- online_means = []
- online_durations = []
- if element['isa'] == 'state':
- online_means, online_durations = online_data(element)
-
- if 'voltage' in opts:
- element['parameter']['voltage'] = opts['voltage']
-
- arg_key = mk_arg_key(element)
- param_key = mk_param_key(element)
- pre_trace = tuple(map(lambda x : x['name'], trace[1:index:2]))
- trace_key = (*param_key, pre_trace)
- name = element['name']
-
- elem_data = {
- 'means' : means,
- 'stds' : stds,
- 'durations' : durations,
- 'energies' : energies,
- 'rel_energies_prev' : rel_energies_prev,
- 'rel_energies_next' : rel_energies_next,
- 'clip_rate' : clips,
- 'timeouts' : timeouts,
- 'sub_thresholds' : sub_thresholds,
- 'param' : [param_key[1]] * len(means),
- 'online_means' : online_means,
- 'online_durations' : online_durations,
- }
- add_data_to_aggregate(by_name, name, element['isa'], elem_data)
- add_data_to_aggregate(by_arg, arg_key, element['isa'], elem_data)
- add_data_to_aggregate(by_param, param_key, element['isa'], elem_data)
- add_data_to_aggregate(by_trace, trace_key, element['isa'], elem_data)
-
-def fmap(reftype, name, funtype):
- if funtype == 'linear':
- return "%s(%s)" % (reftype, name)
- if funtype == 'logarithmic':
- return "np.log(%s(%s))" % (reftype, name)
- if funtype == 'logarithmic1':
- return "np.log(%s(%s) + 1)" % (reftype, name)
- if funtype == 'exponential':
- return "np.exp(%s(%s))" % (reftype, name)
- if funtype == 'square':
- return "%s(%s)**2" % (reftype, name)
- if funtype == 'fractional':
- return "1 / %s(%s)" % (reftype, name)
- if funtype == 'sqrt':
- return "np.sqrt(%s(%s))" % (reftype, name)
- if funtype == 'num0_8':
- return "num0_8(%s(%s))" % (reftype, name)
- if funtype == 'num0_16':
- return "num0_16(%s(%s))" % (reftype, name)
- if funtype == 'num1':
- return "num1(%s(%s))" % (reftype, name)
- return "ERROR"
-
-def fguess_to_function(name, datatype, aggdata, parameters, paramdata, yaxis):
- best_fit = {}
- fitguess = aggdata['fit_guess']
- params = list(filter(lambda x : x in fitguess, parameters))
- if len(params) > 0:
- for param in params:
- best_fit_val = np.inf
- for func_name, fit_val in fitguess[param].items():
- if fit_val['rmsd'] < best_fit_val:
- best_fit_val = fit_val['rmsd']
- best_fit[param] = func_name
- buf = '0'
- pidx = 0
- for elem in powerset(best_fit.items()):
- buf += " + param(%d)" % pidx
- pidx += 1
- for fun in elem:
- buf += " * %s" % fmap('global', *fun)
- aggdata['function']['estimate'] = {
- 'raw' : buf,
- 'params' : list(np.ones((pidx))),
- 'base' : [best_fit[param] for param in params]
- }
- fit_function(
- aggdata['function']['estimate'], name, datatype, parameters,
- paramdata, yaxis=yaxis)
-
-def arg_fguess_to_function(name, datatype, aggdata, arguments, argdata, yaxis):
- best_fit = {}
- fitguess = aggdata['arg_fit_guess']
- args = list(filter(lambda x : x in fitguess, arguments))
- if len(args) > 0:
- for arg in args:
- best_fit_val = np.inf
- for func_name, fit_val in fitguess[arg].items():
- if fit_val['rmsd'] < best_fit_val:
- best_fit_val = fit_val['rmsd']
- best_fit[arg] = func_name
- buf = '0'
- pidx = 0
- for elem in powerset(best_fit.items()):
- buf += " + param(%d)" % pidx
- pidx += 1
- for fun in elem:
- buf += " * %s" % fmap('local', *fun)
- aggdata['function']['estimate_arg'] = {
- 'raw' : buf,
- 'params' : list(np.ones((pidx))),
- 'base' : [best_fit[arg] for arg in args]
- }
- fit_function(
- aggdata['function']['estimate_arg'], name, datatype, arguments,
- argdata, yaxis=yaxis)
-
-def param_measures(name, paramdata, key, fun):
- mae = []
- smape = []
- rmsd = []
- for pkey, pval in paramdata.items():
- if pkey[0] == name:
- # Median ist besseres Maß für MAE / SMAPE,
- # Mean ist besseres für SSR. Da least_squares SSR optimiert
- # nutzen wir hier auch Mean.
- goodness = aggregate_measures(fun(pval[key]), pval[key])
- append_if_set(mae, goodness, 'mae')
- append_if_set(rmsd, goodness, 'rmsd')
- append_if_set(smape, goodness, 'smape')
- ret = {
- 'mae' : mean_or_none(mae),
- 'rmsd' : mean_or_none(rmsd),
- 'smape' : mean_or_none(smape)
- }
-
- return ret
-
-def arg_measures(name, argdata, key, fun):
- return param_measures(name, argdata, key, fun)
-
-def lookup_table(name, paramdata, key, fun, keyfun):
- lut = []
-
- for pkey, pval in paramdata.items():
- if pkey[0] == name:
- lut.append({
- 'key': keyfun(pkey[1]),
- 'value': fun(pval[key]),
- })
-
- return lut
-
-def keydata(name, val, argdata, paramdata, tracedata, key):
- ret = {
- 'count' : len(val[key]),
- 'median' : np.median(val[key]),
- 'mean' : np.mean(val[key]),
- 'median_by_param' : lookup_table(name, paramdata, key, np.median, param_hash),
- 'mean_goodness' : aggregate_measures(np.mean(val[key]), val[key]),
- 'median_goodness' : aggregate_measures(np.median(val[key]), val[key]),
- 'param_mean_goodness' : param_measures(name, paramdata, key, np.mean),
- 'param_median_goodness' : param_measures(name, paramdata, key, np.median),
- 'std_inner' : np.std(val[key]),
- 'std_param' : np.mean([np.std(paramdata[x][key]) for x in paramdata.keys() if x[0] == name]),
- 'std_trace' : np.mean([np.std(tracedata[x][key]) for x in tracedata.keys() if x[0] == name]),
- 'std_by_param' : {},
- 'spearmanr_by_param' : {},
- 'fit_guess' : {},
- 'function' : {},
- }
-
- if val['isa'] == 'transition':
- ret['arg_mean_goodness'] = arg_measures(name, argdata, key, np.mean)
- ret['arg_median_goodness'] = arg_measures(name, argdata, key, np.median)
- ret['median_by_arg'] = lookup_table(name, argdata, key, np.median, list)
- ret['std_arg'] = np.mean([np.std(argdata[x][key]) for x in argdata.keys() if x[0] == name])
- ret['std_by_arg'] = {}
- ret['arg_fit_guess'] = {}
-
- return ret
-
-def splitidx_kfold(length, num_slices):
- pairs = []
- indexes = np.arange(length)
- for i in range(0, num_slices):
- training = np.delete(indexes, slice(i, None, num_slices))
- validation = indexes[i::num_slices]
- pairs.append((training, validation))
- return pairs
-
-def splitidx_srs(length, num_slices):
- pairs = []
- for i in range(0, num_slices):
- shuffled = np.random.permutation(np.arange(length))
- border = int(length * float(2) / 3)
- training = shuffled[:border]
- validation = shuffled[border:]
- pairs.append((training, validation))
- return pairs
-
-def val_run(aggdata, split_fun, count):
- mae = []
- smape = []
- rmsd = []
- pairs = split_fun(len(aggdata), count)
- for i in range(0, count):
- training = aggdata[pairs[i][0]]
- validation = aggdata[pairs[i][1]]
- median = np.median(training)
- goodness = aggregate_measures(median, validation)
- append_if_set(mae, goodness, 'mae')
- append_if_set(rmsd, goodness, 'rmsd')
- append_if_set(smape, goodness, 'smape')
-
- mae_mean = np.mean(mae)
- rmsd_mean = np.mean(rmsd)
- if len(smape):
- smape_mean = np.mean(smape)
- else:
- smape_mean = -1
-
- return mae_mean, smape_mean, rmsd_mean
-
-# by_trace is not part of the cross-validation process
-def val_run_fun(aggdata, by_trace, name, key, funtype1, funtype2, splitfun, count):
- aggdata = aggdata[name]
- isa = aggdata['isa']
- mae = []
- smape = []
- rmsd = []
- estimates = []
- pairs = splitfun(len(aggdata[key]), count)
- for i in range(0, count):
- bpa_training = {}
- bpa_validation = {}
-
- for idx in pairs[i][0]:
- bpa_key = (name, aggdata['param'][idx])
- fake_add_data_to_aggregate(bpa_training, bpa_key, isa, aggdata, idx)
- for idx in pairs[i][1]:
- bpa_key = (name, aggdata['param'][idx])
- fake_add_data_to_aggregate(bpa_validation, bpa_key, isa, aggdata, idx)
-
- fake_by_name = { name : aggdata }
- ares = analyze(fake_by_name, {}, bpa_training, by_trace, parameters)
- if name in ares[isa] and funtype2 in ares[isa][name][funtype1]['function']:
- xv2_assess_function(name, ares[isa][name][funtype1]['function'][funtype2], key, bpa_validation, mae, smape, rmsd)
- if funtype2 == 'estimate':
- if 'base' in ares[isa][name][funtype1]['function'][funtype2]:
- estimates.append(tuple(ares[isa][name][funtype1]['function'][funtype2]['base']))
- else:
- estimates.append(None)
- return mae, smape, rmsd, estimates
-
-# by_trace is not part of the cross-validation process
-def val_run_fun_p(aggdata, by_trace, name, key, funtype1, funtype2, splitfun, count):
- aggdata = dict([[x, aggdata[x]] for x in aggdata if x[0] == name])
- isa = aggdata[list(aggdata.keys())[0]]['isa']
- mae = []
- smape = []
- rmsd = []
- estimates = []
- pairs = splitfun(len(aggdata.keys()), count) # pairs are by_param index arrays
- keys = sorted(aggdata.keys())
- for i in range(0, count):
- bpa_training = dict([[keys[x], aggdata[keys[x]]] for x in pairs[i][0]])
- bpa_validation = dict([[keys[x], aggdata[keys[x]]] for x in pairs[i][1]])
- bna_training = {}
- for val in bpa_training.values():
- for idx in range(0, len(val[key])):
- fake_add_data_to_aggregate(bna_training, name, isa, val, idx)
-
- ares = analyze(bna_training, {}, bpa_training, by_trace, parameters)
- if name in ares[isa] and funtype2 in ares[isa][name][funtype1]['function']:
- xv2_assess_function(name, ares[isa][name][funtype1]['function'][funtype2], key, bpa_validation, mae, smape, rmsd)
- if funtype2 == 'estimate':
- if 'base' in ares[isa][name][funtype1]['function'][funtype2]:
- estimates.append(tuple(ares[isa][name][funtype1]['function'][funtype2]['base']))
- else:
- estimates.append(None)
- return mae, smape, rmsd, estimates
-
-def crossvalidate(by_name, by_param, by_trace, model, parameters):
- param_mc_count = 200
- paramv = param_values(parameters, by_param)
- for name in sorted(by_name.keys()):
- isa = by_name[name]['isa']
- by_name[name]['means'] = np.array(by_name[name]['means'])
- by_name[name]['energies'] = np.array(by_name[name]['energies'])
- by_name[name]['rel_energies_prev'] = np.array(by_name[name]['rel_energies_prev'])
- by_name[name]['rel_energies_next'] = np.array(by_name[name]['rel_energies_next'])
- by_name[name]['durations'] = np.array(by_name[name]['durations'])
-
- if isa == 'state':
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['means'], splitidx_srs, 200)
- print('%16s, static power, Monte Carlo: MAE %8.f µW, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['means'], splitidx_kfold, 10)
- print('%16s, static power, 10-fold sys: MAE %8.f µW, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- else:
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['energies'], splitidx_srs, 200)
- print('%16s, static energy, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['energies'], splitidx_kfold, 10)
- print('%16s, static energy, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_srs, 200)
- print('%16s, static rel_energy_p, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_kfold, 10)
- print('%16s, static rel_energy_p, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_next'], splitidx_srs, 200)
- print('%16s, static rel_energy_n, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_next'], splitidx_kfold, 10)
- print('%16s, static rel_energy_n, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_srs, 200)
- print('%16s, static duration, Monte Carlo: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_kfold, 10)
- print('%16s, static duration, 10-fold sys: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
-
- def print_estimates(estimates, total):
- histogram = {}
- buf = ' '
- for estimate in estimates:
- if not estimate in histogram:
- histogram[estimate] = 1
- else:
- histogram[estimate] += 1
- for estimate, count in sorted(histogram.items(), key=lambda kv: kv[1], reverse=True):
- buf += ' %.f%% %s' % (count * 100 / total, estimate)
- if len(estimates):
- print(buf)
-
- def val_run_funs(by_name, by_trace, name, key1, key2, key3, unit):
- mae, smape, rmsd, estimates = val_run_fun(by_name, by_trace, name, key1, key2, key3, splitidx_srs, param_mc_count)
- print('%16s, %8s %12s, Monte Carlo: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
- name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
- print_estimates(estimates, param_mc_count)
- mae, smape, rmsd, estimates = val_run_fun(by_name, by_trace, name, key1, key2, key3, splitidx_kfold, 10)
- print('%16s, %8s %12s, 10-fold sys: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
- name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
- print_estimates(estimates, 10)
- mae, smape, rmsd, estimates = val_run_fun_p(by_param, by_trace, name, key1, key2, key3, splitidx_srs, param_mc_count)
- print('%16s, %8s %12s, param-aware Monte Carlo: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
- name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
- print_estimates(estimates, param_mc_count)
- mae, smape, rmsd, estimates = val_run_fun_p(by_param, by_trace, name, key1, key2, key3, splitidx_kfold, 10)
- print('%16s, %8s %12s, param-aware 10-fold sys: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
- name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
- print_estimates(estimates, 10)
-
- if 'power' in model[isa][name] and 'function' in model[isa][name]['power']:
- if 'user' in model[isa][name]['power']['function']:
- val_run_funs(by_name, by_trace, name, 'means', 'power', 'user', 'µW')
- if 'estimate' in model[isa][name]['power']['function']:
- val_run_funs(by_name, by_trace, name, 'means', 'power', 'estimate', 'µW')
- if 'timeout' in model[isa][name] and 'function' in model[isa][name]['timeout']:
- if 'user' in model[isa][name]['timeout']['function']:
- val_run_funs(by_name, by_trace, name, 'timeouts', 'timeout', 'user', 'µs')
- if 'estimate' in model[isa][name]['timeout']['function']:
- val_run_funs(by_name, by_trace, name, 'timeouts', 'timeout', 'estimate', 'µs')
- if 'duration' in model[isa][name] and 'function' in model[isa][name]['duration']:
- if 'user' in model[isa][name]['duration']['function']:
- val_run_funs(by_name, by_trace, name, 'durations', 'duration', 'user', 'µs')
- if 'estimate' in model[isa][name]['duration']['function']:
- val_run_funs(by_name, by_trace, name, 'durations', 'duration', 'estimate', 'µs')
- if 'energy' in model[isa][name] and 'function' in model[isa][name]['energy']:
- if 'user' in model[isa][name]['energy']['function']:
- val_run_funs(by_name, by_trace, name, 'energies', 'energy', 'user', 'pJ')
- if 'estimate' in model[isa][name]['energy']['function']:
- val_run_funs(by_name, by_trace, name, 'energies', 'energy', 'estimate', 'pJ')
- if 'rel_energy_prev' in model[isa][name] and 'function' in model[isa][name]['rel_energy_prev']:
- if 'user' in model[isa][name]['rel_energy_prev']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies_prev', 'rel_energy_prev', 'user', 'pJ')
- if 'estimate' in model[isa][name]['rel_energy_prev']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies_prev', 'rel_energy_prev', 'estimate', 'pJ')
- if 'rel_energy_next' in model[isa][name] and 'function' in model[isa][name]['rel_energy_next']:
- if 'user' in model[isa][name]['rel_energy_next']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies_next', 'rel_energy_next', 'user', 'pJ')
- if 'estimate' in model[isa][name]['rel_energy_next']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies_next', 'rel_energy_next', 'estimate', 'pJ')
-
- return
- for i, param in enumerate(parameters):
- user_mae = {}
- user_smape = {}
- estimate_mae = {}
- estimate_smape = {}
- for val in paramv[param]:
- bpa_training = dict([[x, by_param[x]] for x in by_param if x[1][i] != val])
- bpa_validation = dict([[x, by_param[x]] for x in by_param if x[1][i] == val])
- to_pop = []
- for name in by_name.keys():
- if not any(map(lambda x : x[0] == name, bpa_training.keys())):
- to_pop.append(name)
- for name in to_pop:
- by_name.pop(name, None)
- ares = analyze(by_name, {}, bpa_training, by_trace, parameters)
- for name in sorted(ares['state'].keys()):
- state = ares['state'][name]
- if 'function' in state['power']:
- if 'user' in state['power']['function']:
- xv_assess_function(name, state['power']['function']['user'], 'means', bpa_validation, user_mae, user_smape)
- if 'estimate' in state['power']['function']:
- xv_assess_function(name, state['power']['function']['estimate'], 'means', bpa_validation, estimate_mae, estimate_smape)
- for name in sorted(ares['transition'].keys()):
- trans = ares['transition'][name]
- if 'timeout' in trans and 'function' in trans['timeout']:
- if 'user' in trans['timeout']['function']:
- xv_assess_function(name, trans['timeout']['function']['user'], 'timeouts', bpa_validation, user_mae, user_smape)
- if 'estimate' in trans['timeout']['function']:
- xv_assess_function(name, trans['timeout']['function']['estimate'], 'timeouts', bpa_validation, estimate_mae, estimate_smape)
-
- for name in sorted(user_mae.keys()):
- if by_name[name]['isa'] == 'state':
- print('user function %s power by %s: MAE %.f µW, SMAPE %.2f%%' % (
- name, param, np.mean(user_mae[name]), np.mean(user_smape[name])))
- else:
- print('user function %s timeout by %s: MAE %.f µs, SMAPE %.2f%%' % (
- name, param, np.mean(user_mae[name]), np.mean(user_smape[name])))
- for name in sorted(estimate_mae.keys()):
- if by_name[name]['isa'] == 'state':
- print('estimate function %s power by %s: MAE %.f µW, SMAPE %.2f%%' % (
- name, param, np.mean(estimate_mae[name]), np.mean(estimate_smape[name])))
- else:
- print('estimate function %s timeout by %s: MAE %.f µs, SMAPE %.2f%%' % (
- name, param, np.mean(estimate_mae[name]), np.mean(estimate_smape[name])))
-
-def analyze_by_param(aggval, by_param, allvalues, name, key1, key2, param, param_idx):
- aggval[key1]['std_by_param'][param] = mean_std_by_param(
- by_param, allvalues, name, key2, param_idx)
- aggval[key1]['spearmanr_by_param'][param] = spearmanr_by_param(name, key2, param_idx)
- if aggval[key1]['std_by_param'][param] > 0 and aggval[key1]['std_param'] / aggval[key1]['std_by_param'][param] < 0.6:
- aggval[key1]['fit_guess'][param] = try_fits(name, key2, param_idx, by_param)
-
-def analyze_by_arg(aggval, by_arg, allvalues, name, key1, key2, arg_name, arg_idx):
- aggval[key1]['std_by_arg'][arg_name] = mean_std_by_arg(
- by_arg, allvalues, name, key2, arg_idx)
- if aggval[key1]['std_by_arg'][arg_name] > 0 and aggval[key1]['std_arg'] / aggval[key1]['std_by_arg'][arg_name] < 0.6:
- aggval[key1]['arg_fit_guess'][arg_name] = try_fits(name, key2, arg_idx, by_arg)
-
-def maybe_fit_function(aggval, model, by_param, parameters, name, key1, key2, unit):
- if 'function' in model[key1] and 'user' in model[key1]['function']:
- aggval[key1]['function']['user'] = {
- 'raw' : model[key1]['function']['user']['raw'],
- 'params' : model[key1]['function']['user']['params'],
- }
- fit_function(
- aggval[key1]['function']['user'], name, key2, parameters, by_param,
- yaxis='%s %s by param [%s]' % (name, key1, unit))
-
-def analyze(by_name, by_arg, by_param, by_trace, parameters):
- aggdata = {
- 'state' : {},
- 'transition' : {},
- 'min_voltage' : min_voltage,
- 'max_voltage' : max_voltage,
- }
- transition_names = list(map(lambda x: x[0], filter(lambda x: x[1]['isa'] == 'transition', by_name.items())))
- for name, val in by_name.items():
- isa = val['isa']
- model = data['model'][isa][name]
-
- aggdata[isa][name] = {
- 'power' : keydata(name, val, by_arg, by_param, by_trace, 'means'),
- 'duration' : keydata(name, val, by_arg, by_param, by_trace, 'durations'),
- 'energy' : keydata(name, val, by_arg, by_param, by_trace, 'energies'),
- 'clip' : {
- 'mean' : np.mean(val['clip_rate']),
- 'max' : max(val['clip_rate']),
- },
- 'timeout' : {},
- }
-
- aggval = aggdata[isa][name]
- aggval['power']['std_outer'] = np.mean(val['stds'])
-
- if isa == 'transition':
- aggval['rel_energy_prev'] = keydata(name, val, by_arg, by_param, by_trace, 'rel_energies_prev')
- aggval['rel_energy_next'] = keydata(name, val, by_arg, by_param, by_trace, 'rel_energies_next')
- aggval['timeout'] = keydata(name, val, by_arg, by_param, by_trace, 'timeouts')
-
- for i, param in enumerate(parameters):
- values = list(set([key[1][i] for key in by_param.keys() if key[0] == name and key[1][i] != '']))
- allvalues = [(*key[1][:i], *key[1][i+1:]) for key in by_param.keys() if key[0] == name]
- #allvalues = list(set(allvalues))
- if len(values) > 1:
- if isa == 'state':
- analyze_by_param(aggval, by_param, allvalues, name, 'power', 'means', param, i)
- else:
- analyze_by_param(aggval, by_param, allvalues, name, 'duration', 'durations', param, i)
- analyze_by_param(aggval, by_param, allvalues, name, 'energy', 'energies', param, i)
- analyze_by_param(aggval, by_param, allvalues, name, 'rel_energy_prev', 'rel_energies_prev', param, i)
- analyze_by_param(aggval, by_param, allvalues, name, 'rel_energy_next', 'rel_energies_next', param, i)
- analyze_by_param(aggval, by_param, allvalues, name, 'timeout', 'timeouts', param, i)
-
- if isa == 'state':
- fguess_to_function(name, 'means', aggval['power'], parameters, by_param,
- 'estimated %s power by param [µW]' % name)
- maybe_fit_function(aggval, model, by_param, parameters, name, 'power', 'means', 'µW')
- if aggval['power']['std_param'] > 0 and aggval['power']['std_trace'] / aggval['power']['std_param'] < 0.5:
- aggval['power']['std_by_trace'] = mean_std_by_trace_part(by_trace, transition_names, name, 'means')
- else:
- fguess_to_function(name, 'durations', aggval['duration'], parameters, by_param,
- 'estimated %s duration by param [µs]' % name)
- fguess_to_function(name, 'energies', aggval['energy'], parameters, by_param,
- 'estimated %s energy by param [pJ]' % name)
- fguess_to_function(name, 'rel_energies_prev', aggval['rel_energy_prev'], parameters, by_param,
- 'estimated relative_prev %s energy by param [pJ]' % name)
- fguess_to_function(name, 'rel_energies_next', aggval['rel_energy_next'], parameters, by_param,
- 'estimated relative_next %s energy by param [pJ]' % name)
- fguess_to_function(name, 'timeouts', aggval['timeout'], parameters, by_param,
- 'estimated %s timeout by param [µs]' % name)
- maybe_fit_function(aggval, model, by_param, parameters, name, 'duration', 'durations', 'µs')
- maybe_fit_function(aggval, model, by_param, parameters, name, 'energy', 'energies', 'pJ')
- maybe_fit_function(aggval, model, by_param, parameters, name, 'rel_energy_prev', 'rel_energies_prev', 'pJ')
- maybe_fit_function(aggval, model, by_param, parameters, name, 'rel_energy_next', 'rel_energies_next', 'pJ')
- maybe_fit_function(aggval, model, by_param, parameters, name, 'timeout', 'timeouts', 'µs')
-
- for i, arg in enumerate(model['parameters']):
- values = list(set([key[1][i] for key in by_arg.keys() if key[0] == name and is_numeric(key[1][i])]))
- allvalues = [(*key[1][:i], *key[1][i+1:]) for key in by_arg.keys() if key[0] == name]
- analyze_by_arg(aggval, by_arg, allvalues, name, 'duration', 'durations', arg['name'], i)
- analyze_by_arg(aggval, by_arg, allvalues, name, 'energy', 'energies', arg['name'], i)
- analyze_by_arg(aggval, by_arg, allvalues, name, 'rel_energy_prev', 'rel_energies_prev', arg['name'], i)
- analyze_by_arg(aggval, by_arg, allvalues, name, 'rel_energy_next', 'rel_energies_next', arg['name'], i)
- analyze_by_arg(aggval, by_arg, allvalues, name, 'timeout', 'timeouts', arg['name'], i)
-
- arguments = list(map(lambda x: x['name'], model['parameters']))
- arg_fguess_to_function(name, 'durations', aggval['duration'], arguments, by_arg,
- 'estimated %s duration by arg [µs]' % name)
- arg_fguess_to_function(name, 'energies', aggval['energy'], arguments, by_arg,
- 'estimated %s energy by arg [pJ]' % name)
- arg_fguess_to_function(name, 'rel_energies_prev', aggval['rel_energy_prev'], arguments, by_arg,
- 'estimated relative_prev %s energy by arg [pJ]' % name)
- arg_fguess_to_function(name, 'rel_energies_next', aggval['rel_energy_next'], arguments, by_arg,
- 'estimated relative_next %s energy by arg [pJ]' % name)
- arg_fguess_to_function(name, 'timeouts', aggval['timeout'], arguments, by_arg,
- 'estimated %s timeout by arg [µs]' % name)
-
- return aggdata
-
-try:
- raw_opts, args = getopt.getopt(sys.argv[1:], "", [
- "fit", "states", "transitions", "params", "clipping", "timing",
- "histogram", "substates", "validate", "crossvalidate", "ignore-trace-idx=", "voltage"])
- for option, parameter in raw_opts:
- optname = re.sub(r'^--', '', option)
- opts[optname] = parameter
- if 'ignore-trace-idx' in opts:
- opts['ignore-trace-idx'] = int(opts['ignore-trace-idx'])
-except getopt.GetoptError as err:
- print(err)
- sys.exit(2)
-
-data = load_json(args[0])
-by_name = {}
-by_arg = {}
-by_param = {}
-by_trace = {}
-
-if 'voltage' in opts:
- data['model']['parameter']['voltage'] = {
- 'default' : float(data['setup']['mimosa_voltage']),
- 'function' : None,
- 'arg_name' : None,
- }
-
-min_voltage = float(data['setup']['mimosa_voltage'])
-max_voltage = float(data['setup']['mimosa_voltage'])
-
-parameters = sorted(data['model']['parameter'].keys())
-
-for arg in args:
- mdata = load_json(arg)
- this_voltage = float(mdata['setup']['mimosa_voltage'])
- if this_voltage > max_voltage:
- max_voltage = this_voltage
- if this_voltage < min_voltage:
- min_voltage = this_voltage
- if 'voltage' in opts:
- opts['voltage'] = this_voltage
- for runidx, run in enumerate(mdata['traces']):
- if 'ignore-trace-idx' not in opts or opts['ignore-trace-idx'] != runidx:
- for i, elem in enumerate(run['trace']):
- if elem['name'] != 'UNINITIALIZED':
- load_run_elem(i, elem, run['trace'], by_name, by_arg, by_param, by_trace)
-
-#with open('/tmp/by_name.pickle', 'wb') as f:
-# pickle.dump(by_name, f, pickle.HIGHEST_PROTOCOL)
-#with open('/tmp/by_arg.pickle', 'wb') as f:
-# pickle.dump(by_arg, f, pickle.HIGHEST_PROTOCOL)
-#with open('/tmp/by_param.pickle', 'wb') as f:
-# pickle.dump(by_param, f, pickle.HIGHEST_PROTOCOL)
-
-if 'states' in opts:
- if 'params' in opts:
- plotter.plot_states_param(data['model'], by_param)
- else:
- plotter.plot_states(data['model'], by_name)
- if 'timing' in opts:
- plotter.plot_states_duration(data['model'], by_name)
- plotter.plot_states_duration(data['model'], by_param)
- if 'clipping' in opts:
- plotter.plot_states_clips(data['model'], by_name)
-if 'transitions' in opts:
- plotter.plot_transitions(data['model'], by_name)
- if 'timing' in opts:
- plotter.plot_transitions_duration(data['model'], by_name)
- plotter.plot_transitions_timeout(data['model'], by_param)
- if 'clipping' in opts:
- plotter.plot_transitions_clips(data['model'], by_name)
-if 'histogram' in opts:
- for key in sorted(by_name.keys()):
- plotter.plot_histogram(by_name[key]['means'])
-if 'substates' in opts:
- if 'params' in opts:
- plotter.plot_substate_thresholds_p(data['model'], by_param)
- else:
- plotter.plot_substate_thresholds(data['model'], by_name)
-
-if 'crossvalidate' in opts:
- crossvalidate(by_name, by_param, by_trace, data['model'], parameters)
-else:
- data['aggregate'] = analyze(by_name, by_arg, by_param, by_trace, parameters)
-
-# TODO optionally also plot data points for states/transitions which do not have
-# a function, but may depend on a parameter (visualization is always good!)
-
-save_json(data, args[0])