diff options
author | jfalkenhagen <jfalkenhagen@uos.de> | 2020-08-10 16:40:46 +0200 |
---|---|---|
committer | jfalkenhagen <jfalkenhagen@uos.de> | 2020-08-10 16:40:46 +0200 |
commit | 2a1aee9b92085e50050ea22b547db450da820eab (patch) | |
tree | 39602cfb4501df6b3c33651bde7440ce3f24bfab /bin | |
parent | 8acccebc6d9bc0423c3da011b645ee379b71a417 (diff) |
Proof_Of_Concept_PELT: Kleine Bugfixes, für den Fall dass nicht alle Messungen verwendet werden können. Verbesserung der Normierung des Signals
Diffstat (limited to 'bin')
-rw-r--r-- | bin/Proof_Of_Concept_PELT.py | 69 |
1 files changed, 58 insertions, 11 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py index 40c405d..4819f64 100644 --- a/bin/Proof_Of_Concept_PELT.py +++ b/bin/Proof_Of_Concept_PELT.py @@ -221,7 +221,7 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0, else: # range_min == range_max. has the same effect as pen_override knee = (range_min, None) - print_info(str(knee[0]) + " has been selected as kneepoint.") + print_info(str(knee[0]) + " has been selected as penalty.") if knee[0] is not None: return knee @@ -375,11 +375,15 @@ def print_error(str_to_prt): print("[ERROR]" + str_prt, file=sys.stderr) -def norm_signal(signal): +def norm_signal(signal, scaler=50): # TODO: maybe refine normalisation of signal + max_val = max(signal) normed_signal = np.zeros(shape=len(signal)) for i, signal_i in enumerate(signal): - normed_signal[i] = signal_i / 1000 + normed_signal[i] = signal_i / max_val + normed_signal[i] = normed_signal[i] * scaler + # plt.plot(normed_signal) + # plt.show() return normed_signal @@ -559,6 +563,7 @@ if __name__ == '__main__': by_name_file = None param_names_file = None from_cache = False + not_accurate = False if opt_cache_loc is not None: flag = False by_name_loc = os.path.join(opt_cache_loc, "by_name.txt") @@ -701,6 +706,10 @@ if __name__ == '__main__': print_info("Discarding measurement No. " + str(num_measurement) + " because it did not recognize the number of " "raw_states correctly.") + # l_signal = measurements_by_config['offline'][num_measurement]['uW'] + # l_bkpts = [s[1] for s in raw_states] + # fig, ax = rpt.display(np.array(l_signal), l_bkpts) + # plt.show() # for i, x in enumerate(states_duration_list): # states_duration_list[i] = x / num_used_measurements # for i, x in enumerate(states_consumption_list): @@ -718,7 +727,7 @@ if __name__ == '__main__': + " Others did not recognize number of states correctly.") num_used_measurements = i # TODO: DEBUG Kram - sys.exit(0) + #sys.exit(0) else: print_info("Used all available measurements.") @@ -730,7 +739,25 @@ if __name__ == '__main__': # break # combine all state durations and consumptions to parametrized model - + if len(state_durations_by_config) == 0: + print("No refinement necessary for this state. The macromodel is usable.") + sys.exit() + if len(state_durations_by_config) / len(configurations) > 1 / 2 \ + and len(state_durations_by_config) != len(configurations): + print_warning( + "Some measurements(>50%) need to be refined, however that is not true for" + " all measurements. This hints a correlation between the structure of" + " the underlying automaton and parameters. Only the ones which need to" + " be refined will be refined. THE RESULT WILL NOT ACCURATELY DEPICT " + " THE REAL WORLD.") + not_accurate = True + if len(state_durations_by_config) / len(configurations) < 1 / 2: + print_warning( + "Some measurements(<50%) need to be refined, however that is not true for" + " all measurements. This hints a correlation between the structure of" + " the underlying automaton and parameters. Or a poor quality of measurements." + " No Refinement will be done.") + sys.exit(-1) # this is only necessary because at this state only linear automatons can be modeled. num_states_array = [int()] * len(state_consumptions_by_config) for i, (_, states_consumption_list) in enumerate(state_consumptions_by_config): @@ -748,7 +775,9 @@ if __name__ == '__main__': "Config No." + str(num_config) + " not usable yet due to different " + "number of states. This hints a correlation between parameters and " + "the structure of the resulting automaton. This will be possibly" - + " supported in a future version of this tool.") + + " supported in a future version of this tool. HOWEVER AT THE MOMENT" + " THIS WILL LEAD TO INACCURATE RESULTS!") + not_accurate = True usable_configs = usable_configs - 1 else: param_list.extend(configurations[num_config]['offline_aggregates']['param']) @@ -759,18 +788,28 @@ if __name__ == '__main__': else: print_info("Using only " + str(usable_configs) + " Configs.") by_name = {} + usable_configs_2 = len(state_consumptions_by_config) for i in range(num_raw_states): consumptions_for_state = [] durations_for_state = [] for j, (_, states_consumption_list) in enumerate(state_consumptions_by_config): - consumptions_for_state.extend(states_consumption_list[i]) - durations_for_state.extend(state_durations_by_config[j][1][i]) + if len(states_consumption_list) == num_raw_states: + consumptions_for_state.extend(states_consumption_list[i]) + durations_for_state.extend(state_durations_by_config[j][1][i]) + else: + not_accurate = True + usable_configs_2 = usable_configs_2 - 1 + if usable_configs_2 != usable_configs: + print_error("an zwei unterschiedlichen Stellen wurden unterschiedlich viele " + "Messungen rausgeworfen. Bei Janis beschweren.") state_name = "state_" + str(i) state_dict = { "param": param_list, "power": consumptions_for_state, "duration": durations_for_state, - "attributes": ["power", "duration"] + "attributes": ["power", "duration"], + # Da kein richtiger Automat generiert wird, gibt es auch keine Transitionen + "isa": "state" } by_name[state_name] = state_dict by_param = by_name_to_by_param(by_name) @@ -943,7 +982,9 @@ if __name__ == '__main__': "param": param_list, "power": consumptions_for_state, "duration": durations_for_state, - "attributes": ["power", "duration"] + "attributes": ["power", "duration"], + # Da kein richtiger Automat generiert wird, gibt es auch keine Transitionen + "isa": "state" } new_by_name[state_name] = new_state_dict new_by_param = by_name_to_by_param(new_by_name) @@ -993,7 +1034,13 @@ if __name__ == '__main__': model_function = model_function.replace(replace_string, str(arg)) print("Duration-Function for state " + state_name + ": " + model_function) - model = PTAModel(by_name, param_names, dict()) + model = PTAModel(new_by_name, param_names, dict()) + model_json = model.to_json() + print(model_json) + if not_accurate: + print_warning( + "THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING" + " WHY.") # TODO: removed clustering (temporarily), since it provided too much dificultys |