summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2018-01-22 15:30:59 +0100
committerDaniel Friesel <derf@finalrewind.org>2018-01-22 15:30:59 +0100
commitc6c4ca2b01ab9067d0e5fbb09cc30cb3065dd39e (patch)
tree4e757266b1bd5c86959bbbbc9464d518d8ce0251 /lib/dfatool.py
parent3c8b2b7663282db13096c32cfe509e367293b56a (diff)
Implement preprocessing without perl script hackery
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py184
1 files changed, 169 insertions, 15 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index fcbac94..85ba7c9 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -2,6 +2,7 @@
import csv
from itertools import chain, combinations
+import io
import json
import numpy as np
import os
@@ -9,6 +10,7 @@ from scipy.cluster.vq import kmeans2
import struct
import sys
import tarfile
+from multiprocessing import Pool
def running_mean(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
@@ -87,6 +89,153 @@ class Keysight:
currents[i] = float(row[2]) * -1
return timestamps, currents
+def _preprocess_measurement(measurement):
+ setup = measurement['setup']
+ mim = MIMOSA(float(setup['mimosa_voltage']), int(setup['mimosa_shunt']))
+ charges, triggers = mim.load_data(measurement['content'])
+ trigidx = mim.trigger_edges(triggers)
+ triggers = []
+ cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10))
+ calfunc, caldata = mim.calibration_function(charges, cal_edges)
+ vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
+
+ processed_data = {
+ 'info' : measurement['info'],
+ 'triggers' : len(trigidx),
+ 'first_trig' : trigidx[0] * 10,
+ 'calibration' : caldata,
+ 'trace' : mim.analyze_states(charges, trigidx, vcalfunc)
+ }
+
+ return processed_data
+
+class AEMRAnalyzer:
+
+ def __init__(self, filename):
+ self.filename = filename
+ self.version = 0
+
+ def _state_is_too_short(self, online, offline, next_transition):
+ # We cannot control when an interrupt causes a state to be left
+ if next_transition['plan']['level'] == 'epilogue':
+ return False
+
+ # Note: state_duration is stored as ms, not us
+ return offline['us'] < self.setup['state_duration'] * 500
+
+ def _state_is_too_long(self, online, offline, prev_transition):
+ # If the previous state was left by an interrupt, we may have some
+ # waiting time left over. So it's okay if the current state is longer
+ # than expected.
+ if prev_transition['plan']['level'] == 'epilogue':
+ return False
+ # state_duration is stored as ms, not us
+ return offline['us'] > self.setup['state_duration'] * 1500
+
+ def _measurement_is_valid(self, processed_data):
+ # Check trigger count
+ if self.sched_trigger_count != processed_data['triggers']:
+ processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format(
+ got = processed_data['triggers'],
+ exp = self.sched_trigger_count
+ )
+ return False
+ # Check state durations. Very short or long states can indicate a
+ # missed trigger signal which wasn't detected due to duplicate
+ # triggers elsewhere
+ online_datapoints = []
+ for run_idx, run in enumerate(self.traces):
+ for trace_part_idx in range(len(run['trace'])):
+ online_datapoints.append((run_idx, trace_part_idx))
+ for offline_idx, online_ref in enumerate(online_datapoints):
+ online_run_idx, online_trace_part_idx = online_ref
+ offline_trace_part = processed_data['trace'][offline_idx]
+ online_trace_part = self.traces[online_run_idx]['trace'][online_trace_part_idx]
+
+ if online_trace_part['isa'] != offline_trace_part['isa']:
+ processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format(
+ off_idx = offline_idx, on_idx = online_run_idx,
+ on_sub = online_trace_part_idx,
+ on_name = online_trace_part['name'],
+ off_isa = offline_trace_part['isa'],
+ on_isa = online_trace_part['isa'])
+ return False
+
+ if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED':
+ online_prev_transition = self.traces[online_run_idx]['trace'][online_trace_part_idx-1]
+ online_next_transition = self.traces[online_run_idx]['trace'][online_trace_part_idx+1]
+ if self._state_is_too_short(online_trace_part, offline_trace_part, online_next_transition):
+ processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)'.format(
+ off_idx = offline_idx, on_idx = online_run_idx,
+ on_sub = online_trace_part_idx,
+ on_name = online_trace_part['name'],
+ dur = offline_trace_part['us'])
+ return False
+ if self._state_is_too_long(online_trace_part, offline_trace_part, online_prev_transition):
+ processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)'.format(
+ off_idx = offline_idx, on_idx = online_run_idx,
+ on_sub = online_trace_part_idx,
+ on_name = online_trace_part['name'],
+ dur = offline_trace_part['us'])
+ return False
+ return True
+
+ def _merge_measurement_into_online_data(self, measurement):
+ online_datapoints = []
+ for run_idx, run in enumerate(self.traces):
+ for trace_part_idx in range(len(run['trace'])):
+ online_datapoints.append((run_idx, trace_part_idx))
+ for offline_idx, online_ref in enumerate(online_datapoints):
+ online_run_idx, online_trace_part_idx = online_ref
+ offline_trace_part = measurement['trace'][offline_idx]
+ online_trace_part = self.traces[online_run_idx]['trace'][online_trace_part_idx]
+
+ if not 'offline' in online_trace_part:
+ online_trace_part['offline'] = [offline_trace_part]
+ else:
+ online_trace_part['offline'].append(offline_trace_part)
+
+ def preprocess(self):
+ if self.version == 0:
+ self.preprocess_0()
+
+ # Loads raw MIMOSA data and turns it into measurements which are ready to
+ # be analyzed.
+ def preprocess_0(self):
+ with tarfile.open(self.filename) as tf:
+ self.setup = json.load(tf.extractfile('setup.json'))
+ self.traces = json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json'))
+ print(self.setup)
+ mim_files = []
+ for member in tf.getmembers():
+ _, extension = os.path.splitext(member.name)
+ if extension == '.mim':
+ mim_files.append({
+ 'setup' : self.setup,
+ 'info' : member,
+ 'content' : tf.extractfile(member).read()
+ })
+ with Pool() as pool:
+ measurements = pool.map(_preprocess_measurement, mim_files)
+ self.sched_trigger_count = 0
+ for run in self.traces:
+ self.sched_trigger_count += len(run['trace'])
+ num_valid = 0
+ for measurement in measurements:
+ if self._measurement_is_valid(measurement):
+ self._merge_measurement_into_online_data(measurement)
+ num_valid += 1
+ else:
+ print('[W] Skipping {m:s}: {e:s}'.format(
+ m = measurement['info'].name,
+ e = measurement['error']))
+ print('[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
+ num_valid = num_valid,
+ num_total = len(measurements)))
+
+ def analyze(self):
+ pass
+
class MIMOSA:
def __init__(self, voltage, shunt):
@@ -100,20 +249,25 @@ class MIMOSA:
ua_step = ua_max / 65535
return charge * ua_step
- def load_data(self, filename):
- with tarfile.open(filename) as tf:
- num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size
- charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
- triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
- with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f:
- content = f.read()
- iterator = struct.iter_unpack('<I', content)
- i = 0
- for word in iterator:
- charges[i] = (word[0] >> 4)
- triggers[i] = (word[0] & 0x08) >> 3
- i += 1
- return (charges, triggers)
+ def _load_tf(self, tf):
+ num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size
+ charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
+ triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
+ with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f:
+ content = f.read()
+ iterator = struct.iter_unpack('<I', content)
+ i = 0
+ for word in iterator:
+ charges[i] = (word[0] >> 4)
+ triggers[i] = (word[0] & 0x08) >> 3
+ i += 1
+ return charges, triggers
+
+
+ def load_data(self, raw_data):
+ with io.BytesIO(raw_data) as data_object:
+ with tarfile.open(fileobj = data_object) as tf:
+ return self._load_tf(tf)
def currents_nocal(self, charges):
ua_max = 1.836 / self.shunt * 1000000
@@ -168,7 +322,7 @@ class MIMOSA:
if cal_r2_mean > cal_0_mean:
b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
else:
- print("WARNING: 0 uA == %.f uA during calibration" % (ua_r2))
+ print('[W] 0 uA == %.f uA during calibration' % (ua_r2))
b_lower = 0
b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)