summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-03-05 16:10:49 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-03-05 16:10:49 +0100
commitcc31a043f21c16986d7b33eabb05cfc34d6e0390 (patch)
tree024529d92341a8b3096095e3043dc204082f17db /lib/dfatool.py
parentcf7e68c388bd1ef0e9e2ee64b5193e09be16b6da (diff)
working benchmark generation
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py20
1 files changed, 10 insertions, 10 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 38e140d..a089c1d 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -19,7 +19,7 @@ from utils import *
arg_support_enabled = True
-def running_mean(x, N):
+def running_mean(x: np.ndarray, N: int) -> np.ndarray:
"""
Compute running average.
@@ -44,7 +44,7 @@ def soft_cast_int(n):
except ValueError:
return n
-def vprint(verbose, string):
+def vprint(verbose: bool, string: str):
"""
Print string if verbose.
@@ -69,7 +69,7 @@ def vprint(verbose, string):
return x / y
return 1.
-def gplearn_to_function(function_str):
+def gplearn_to_function(function_str: str):
"""
Convert gplearn-style function string to Python function.
@@ -109,7 +109,7 @@ def gplearn_to_function(function_str):
print(eval_str)
return eval(eval_str, eval_globals)
-def _elem_param_and_arg_list(elem):
+def _elem_param_and_arg_list(elem: dict):
param_dict = elem['parameter']
paramkeys = sorted(param_dict.keys())
paramvalue = [soft_cast_int(param_dict[x]) for x in paramkeys]
@@ -117,10 +117,10 @@ def _elem_param_and_arg_list(elem):
paramvalue.extend(map(soft_cast_int, elem['args']))
return paramvalue
-def _arg_name(arg_index):
+def _arg_name(arg_index: int) -> str:
return '~arg{:02}'.format(arg_index)
-def append_if_set(aggregate, data, key):
+def append_if_set(aggregate: dict, data: dict, key: str):
"""Append data[key] to aggregate if key in data."""
if key in data:
aggregate.append(data[key])
@@ -131,7 +131,7 @@ def mean_or_none(arr):
return np.mean(arr)
return -1
-def aggregate_measures(aggregate, actual):
+def aggregate_measures(aggregate: float, actual: list) -> dict:
"""
Calculate error measures for model value on data list.
@@ -145,7 +145,7 @@ def aggregate_measures(aggregate, actual):
aggregate_array = np.array([aggregate] * len(actual))
return regression_measures(aggregate_array, np.array(actual))
-def regression_measures(predicted, actual):
+def regression_measures(predicted: np.ndarray, actual: np.ndarray):
"""
Calculate error measures by comparing model values to reference values.
@@ -204,7 +204,7 @@ class KeysightCSV:
"""Create a new KeysightCSV object."""
pass
- def load_data(self, filename):
+ def load_data(self, filename: str):
"""
Load log data from filename, return timestamps and currents.
@@ -225,7 +225,7 @@ class KeysightCSV:
currents[i] = float(row[2]) * -1
return timestamps, currents
-def by_name_to_by_param(by_name):
+def by_name_to_by_param(by_name: dict):
"""
Convert aggregation by name to aggregation by name and parameter values.
"""