diff options
author | Birte Kristina Friesel <birte.friesel@uos.de> | 2024-03-06 16:27:19 +0100 |
---|---|---|
committer | Birte Kristina Friesel <birte.friesel@uos.de> | 2024-03-06 16:27:19 +0100 |
commit | 29d10d5dd6c08bcafc7c34c48b8db599fcbd7e49 (patch) | |
tree | 8de6f67ffed23da7e99be12c87a2c28bdfedad0a /lib/functions.py | |
parent | 89568c6b4b9a35612c794431d551bc0cc638e46d (diff) |
Add LightGBM support
Diffstat (limited to 'lib/functions.py')
-rw-r--r-- | lib/functions.py | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/lib/functions.py b/lib/functions.py index f557cbb..417c8c8 100644 --- a/lib/functions.py +++ b/lib/functions.py @@ -991,6 +991,173 @@ class LMTFunction(SKLearnRegressionFunction): } +class LightGBMFunction(SKLearnRegressionFunction): + + def fit(self, param_values, data): + + # boosting_type : str, optional (default='gbdt') + # 'gbdt', traditional Gradient Boosting Decision Tree. + # 'dart', Dropouts meet Multiple Additive Regression Trees. + # 'rf', Random Forest. + boosting_type = os.getenv("DFATOOL_LGBM_BOOSTER", "gbdt") + + # n_estimators : int, optional (default=100) + # Number of boosted trees to fit. + n_estimators = int(os.getenv("DFATOOL_LGBM_N_ESTIMATORS", "100")) + + # max_depth : int, optional (default=-1) + # Maximum tree depth for base learners, <=0 means no limit. + max_depth = int(os.getenv("DFATOOL_LGBM_MAX_DEPTH", "-1")) + + # num_leaves : int, optional (default=31) + # Maximum tree leaves for base learners. + num_leaves = int(os.getenv("DFATOOL_LGBM_NUM_LEAVES", "31")) + + # subsample : float, optional (default=1.) + # Subsample ratio of the training instance. + subsample = float(os.getenv("DFATOOL_LGBM_SUBSAMPLE", "1.")) + + # learning_rate : float, optional (default=0.1) + # Boosting learning rate. + # You can use ``callbacks`` parameter of ``fit`` method to shrink/adapt learning rate + # in training using ``reset_parameter`` callback. + # Note, that this will ignore the ``learning_rate`` argument in training. + learning_rate = float(os.getenv("DFATOOL_LGBM_LEARNING_RATE", "0.1")) + + # min_split_gain : float, optional (default=0.) + # Minimum loss reduction required to make a further partition on a leaf node of the tree. + min_split_gain = float(os.getenv("DFATOOL_LGBM_MIN_SPLIT_GAIN", "0.")) + + # min_child_samples : int, optional (default=20) + # Minimum number of data needed in a child (leaf). + min_child_samples = int(os.getenv("DFATOOL_LGBM_MIN_CHILD_SAMPLES", "20")) + + # reg_alpha : float, optional (default=0.) + # L1 regularization term on weights. + reg_alpha = float(os.getenv("DFATOOL_LGBM_REG_ALPHA", "0.")) + + # reg_lambda : float, optional (default=0.) + # L2 regularization term on weights. + reg_lambda = float(os.getenv("DFATOOL_LGBM_REG_LAMBDA", "0.")) + + fit_parameters, self.categorical_to_index, self.ignore_index = param_to_ndarray( + param_values, + with_nan=False, + categorical_to_scalar=self.categorical_to_scalar, + ) + if fit_parameters.shape[1] == 0: + logger.warning( + f"Cannot run LightGBM due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}" + ) + self.fit_success = False + return self + + import dfatool.lightgbm as lightgbm + + lgbr = lightgbm.LGBMRegressor( + boosting_type=boosting_type, + n_estimators=n_estimators, + max_depth=max_depth, + num_leaves=num_leaves, + subsample=subsample, + learning_rate=learning_rate, + min_split_gain=min_split_gain, + min_child_samples=min_child_samples, + reg_alpha=reg_alpha, + reg_lambda=reg_lambda, + ) + lgbr.fit(fit_parameters, data) + self.fit_success = True + self.regressor = lgbr + self._build_feature_names() + + return self + + def to_json(self, internal=False, **kwargs): + forest = self.regressor.booster_.dump_model()["tree_info"] + if internal: + return forest + return list( + map( + lambda tree: self._model_to_json(tree["tree_structure"], **kwargs), + forest, + ) + ) + + def _model_to_json(self, tree, **kwargs): + ret = dict() + if "left_child" in tree: + assert "right_child" in tree + assert tree["decision_type"] == "<=" + return { + "type": "scalarSplit", + "paramName": self.feature_names[tree["split_feature"]], + "threshold": tree["threshold"], + "value": None, + "left": self._model_to_json(tree["left_child"], **kwargs), + "right": self._model_to_json(tree["right_child"], **kwargs), + } + else: + return { + "type": "static", + "value": tree["leaf_value"], + } + + def get_number_of_nodes(self): + return sum( + map( + lambda t: self._get_number_of_nodes(t["tree_structure"]), + self.to_json(internal=True), + ) + ) + + def _get_number_of_nodes(self, data): + ret = 1 + if "left_child" in data: + ret += self._get_number_of_nodes(data["left_child"]) + if "right_child" in data: + ret += self._get_number_of_nodes(data["right_child"]) + return ret + + def get_number_of_leaves(self): + return sum(map(lambda t: t["num_leaves"], self.to_json(internal=True))) + + def get_max_depth(self): + return max( + map( + lambda t: self._get_max_depth(t["tree_structure"]), + self.to_json(internal=True), + ) + ) + + def _get_max_depth(self, data): + ret = [0] + if "left_child" in data: + ret.append(self._get_max_depth(data["left_child"])) + if "right_child" in data: + ret.append(self._get_max_depth(data["right_child"])) + return 1 + max(ret) + + def get_complexity_score(self): + return self.get_number_of_nodes() + + def hyper_to_dref(self): + return { + "lgbm/boosting type": self.regressor.boosting_type, + "lgbm/n estimators": self.regressor.n_estimators, + "lgbm/max depth": self.regressor.max_depth == -1 + and "infty" + or self.regressor.max_depth, + "lgbm/max leaves": self.regressor.num_leaves, + "lgbm/subsample": self.regressor.subsample, + "lgbm/learning rate": self.regressor.learning_rate, + "lgbm/min split gain": self.regressor.min_split_gain, + "lgbm/min child samples": self.regressor.min_child_samples, + "lgbm/alpha": self.regressor.reg_alpha, + "lgbm/lambda": self.regressor.reg_lambda, + } + + class XGBoostFunction(SKLearnRegressionFunction): def fit(self, param_values, data): |