summaryrefslogtreecommitdiff
path: root/lib/loader
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2021-03-19 13:13:58 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2021-03-19 13:13:58 +0100
commitdf01b58ce1adeeb833c594f6d942e80b9062068c (patch)
treed49fe133126b2ee8a5f3ffde33a36cbbd1706732 /lib/loader
parent03390b32cdfb2b8f25a6d6b19cae5954dce9eff3 (diff)
move timer-based synchronization to a generic class
Diffstat (limited to 'lib/loader')
-rw-r--r--lib/loader/generic.py163
-rw-r--r--lib/loader/keysight.py155
2 files changed, 166 insertions, 152 deletions
diff --git a/lib/loader/generic.py b/lib/loader/generic.py
new file mode 100644
index 0000000..c19583a
--- /dev/null
+++ b/lib/loader/generic.py
@@ -0,0 +1,163 @@
+#!/usr/bin/env python3
+
+import numpy as np
+from bisect import bisect_right
+
+
+class ExternalTimerSync:
+ def __init__(self):
+ raise NotImplementedError("must be implemented in sub-class")
+
+ # very similar to DataProcessor.getStatesdfatool
+ # requires:
+ # * self.data (e.g. power readings)
+ # * self.timestamps (timstamps in seconds)
+ # * self.sync_power, self.sync_min_duration: synchronization pulse parameters. one pulse before the measurement, two pulses afterwards
+ # expected_trace must contain online timestamps
+ def analyze_states(self, expected_trace, repeat_id):
+ sync_start = None
+ sync_timestamps = list()
+ above_count = 0
+ below_count = 0
+ for i, timestamp in enumerate(self.timestamps):
+ power = self.data[i]
+ if power > self.sync_power:
+ above_count += 1
+ below_count = 0
+ else:
+ above_count = 0
+ below_count += 1
+
+ if above_count > 2 and sync_start is None:
+ sync_start = timestamp
+ elif below_count > 2 and sync_start is not None:
+ if timestamp - sync_start > self.sync_min_duration:
+ sync_end = timestamp
+ sync_timestamps.append((sync_start, sync_end))
+ sync_start = None
+ print(sync_timestamps)
+
+ if len(sync_timestamps) != 3:
+ self.errors.append(
+ f"Found {len(sync_timestamps)} synchronization pulses, expected three."
+ )
+ self.errors.append(f"Synchronization pulses == {sync_timestamps}")
+ return list()
+
+ start_ts = sync_timestamps[0][1]
+ end_ts = sync_timestamps[1][0]
+
+ # start and end of first state
+ online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
+
+ # remaining events from the end of the first transition (start of second state) to the end of the last observed state
+ for trace in expected_trace:
+ for word in trace["trace"]:
+ online_timestamps.append(
+ online_timestamps[-1]
+ + word["online_aggregates"]["duration"][repeat_id]
+ )
+
+ online_timestamps = np.array(online_timestamps) * 1e-6
+ online_timestamps = (
+ online_timestamps * ((end_ts - start_ts) / online_timestamps[-1]) + start_ts
+ )
+
+ trigger_edges = list()
+ for ts in online_timestamps:
+ trigger_edges.append(bisect_right(self.timestamps, ts))
+
+ energy_trace = list()
+
+ for i in range(2, len(online_timestamps), 2):
+ prev_state_start_index = trigger_edges[i - 2]
+ prev_state_stop_index = trigger_edges[i - 1]
+ transition_start_index = trigger_edges[i - 1]
+ transition_stop_index = trigger_edges[i]
+ state_start_index = trigger_edges[i]
+ state_stop_index = trigger_edges[i + 1]
+
+ # If a transition takes less time than the measurement interval, its start and stop index may be the same.
+ # In this case, self.data[transition_start_index] is the only data point affected by the transition.
+ # We use the self.data slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
+ # to increment transition_stop_index by 1 to end at self.data[transition_start_index]
+ # (self.data[transition_start_index : transition_start_index+1 ] == [self.data[transition_start_index])
+ if transition_stop_index == transition_start_index:
+ transition_stop_index += 1
+
+ prev_state_duration = online_timestamps[i + 1] - online_timestamps[i]
+ transition_duration = online_timestamps[i] - online_timestamps[i - 1]
+ state_duration = online_timestamps[i + 1] - online_timestamps[i]
+
+ # some states are followed by a UART dump of log data. This causes an increase in CPU energy
+ # consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
+ # If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
+ # In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
+ # instead of high-precision sync data
+ if (
+ self.timestamps[prev_state_stop_index]
+ - self.timestamps[prev_state_start_index]
+ > self.state_duration
+ ):
+ prev_state_stop_index = bisect_right(
+ self.timestamps,
+ self.timestamps[prev_state_start_index] + self.state_duration,
+ )
+ prev_state_duration = (
+ self.timestamps[prev_state_stop_index]
+ - self.timestamps[prev_state_start_index]
+ )
+
+ if (
+ self.timestamps[state_stop_index] - self.timestamps[state_start_index]
+ > self.state_duration
+ ):
+ state_stop_index = bisect_right(
+ self.timestamps,
+ self.timestamps[state_start_index] + self.state_duration,
+ )
+ state_duration = (
+ self.timestamps[state_stop_index]
+ - self.timestamps[state_start_index]
+ )
+
+ prev_state_power = self.data[prev_state_start_index:prev_state_stop_index]
+
+ transition_timestamps = self.timestamps[
+ transition_start_index:transition_stop_index
+ ]
+ transition_power = self.data[transition_start_index:transition_stop_index]
+
+ state_timestamps = self.timestamps[state_start_index:state_stop_index]
+ state_power = self.data[state_start_index:state_stop_index]
+
+ transition = {
+ "isa": "transition",
+ "W_mean": np.mean(transition_power),
+ "W_std": np.std(transition_power),
+ "s": transition_duration,
+ }
+ if self.with_traces:
+ transition["plot"] = (
+ transition_timestamps - transition_timestamps[0],
+ transition_power,
+ )
+
+ state = {
+ "isa": "state",
+ "W_mean": np.mean(state_power),
+ "W_std": np.std(state_power),
+ "s": state_duration,
+ }
+ if self.with_traces:
+ state["plot"] = (state_timestamps - state_timestamps[0], state_power)
+
+ transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
+ prev_state_power
+ )
+ transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
+
+ energy_trace.append(transition)
+ energy_trace.append(state)
+
+ return energy_trace
diff --git a/lib/loader/keysight.py b/lib/loader/keysight.py
index 9f9623a..2243361 100644
--- a/lib/loader/keysight.py
+++ b/lib/loader/keysight.py
@@ -6,7 +6,7 @@ import numpy as np
import struct
import xml.etree.ElementTree as ET
-from bisect import bisect_right
+from dfatool.loader.generic import ExternalTimerSync
class KeysightCSV:
@@ -49,7 +49,7 @@ class DLogChannel:
return f"""<DLogChannel(slot={self.slot}, smu="{self.smu}", unit="{self.unit}", data={self.data})>"""
-class DLog:
+class DLog(ExternalTimerSync):
def __init__(
self,
voltage: float,
@@ -168,156 +168,7 @@ class DLog:
self.slots[channel.slot - 1][channel.unit] = channel
assert "A" in self.slots[0]
- self.data = self.slots[0]["A"].data
+ self.data = self.slots[0]["A"].data * self.voltage
def observed_duration_equals_expectation(self):
return int(self.observed_duration) == self.planned_duration
-
- # very similar to DataProcessor.getStatesdfatool
- def analyze_states(self, expected_trace, repeat_id):
- sync_start = None
- sync_timestamps = list()
- above_count = 0
- below_count = 0
- for i, timestamp in enumerate(self.timestamps):
- power = self.voltage * self.data[i]
- if power > self.sync_power:
- above_count += 1
- below_count = 0
- else:
- above_count = 0
- below_count += 1
-
- if above_count > 2 and sync_start is None:
- sync_start = timestamp
- elif below_count > 2 and sync_start is not None:
- if timestamp - sync_start > self.sync_min_duration:
- sync_end = timestamp
- sync_timestamps.append((sync_start, sync_end))
- sync_start = None
- print(sync_timestamps)
-
- if len(sync_timestamps) != 3:
- self.errors.append(
- f"Found {len(sync_timestamps)} synchronization pulses, expected three."
- )
- self.errors.append(f"Synchronization pulses == {sync_timestamps}")
- return list()
-
- start_ts = sync_timestamps[0][1]
- end_ts = sync_timestamps[1][0]
-
- # start and end of first state
- online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
-
- # remaining events from the end of the first transition (start of second state) to the end of the last observed state
- for trace in expected_trace:
- for word in trace["trace"]:
- online_timestamps.append(
- online_timestamps[-1]
- + word["online_aggregates"]["duration"][repeat_id]
- )
-
- online_timestamps = np.array(online_timestamps) * 1e-6
- online_timestamps = (
- online_timestamps * ((end_ts - start_ts) / online_timestamps[-1]) + start_ts
- )
-
- trigger_edges = list()
- for ts in online_timestamps:
- trigger_edges.append(bisect_right(self.timestamps, ts))
-
- energy_trace = list()
-
- for i in range(2, len(online_timestamps), 2):
- prev_state_start_index = trigger_edges[i - 2]
- prev_state_stop_index = trigger_edges[i - 1]
- transition_start_index = trigger_edges[i - 1]
- transition_stop_index = trigger_edges[i]
- state_start_index = trigger_edges[i]
- state_stop_index = trigger_edges[i + 1]
-
- # If a transition takes less time than the measurement interval, its start and stop index may be the same.
- # In this case, self.data[transition_start_index] is the only data point affected by the transition.
- # We use the self.data slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
- # to increment transition_stop_index by 1 to end at self.data[transition_start_index]
- # (self.data[transition_start_index : transition_start_index+1 ] == [self.data[transition_start_index])
- if transition_stop_index == transition_start_index:
- transition_stop_index += 1
-
- prev_state_duration = online_timestamps[i + 1] - online_timestamps[i]
- transition_duration = online_timestamps[i] - online_timestamps[i - 1]
- state_duration = online_timestamps[i + 1] - online_timestamps[i]
-
- # some states are followed by a UART dump of log data. This causes an increase in CPU energy
- # consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
- # If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
- # In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
- # instead of high-precision sync data
- if (
- self.timestamps[prev_state_stop_index]
- - self.timestamps[prev_state_start_index]
- > self.state_duration
- ):
- prev_state_stop_index = bisect_right(
- self.timestamps,
- self.timestamps[prev_state_start_index] + self.state_duration,
- )
- prev_state_duration = (
- self.timestamps[prev_state_stop_index]
- - self.timestamps[prev_state_start_index]
- )
-
- if (
- self.timestamps[state_stop_index] - self.timestamps[state_start_index]
- > self.state_duration
- ):
- state_stop_index = bisect_right(
- self.timestamps,
- self.timestamps[state_start_index] + self.state_duration,
- )
- state_duration = (
- self.timestamps[state_stop_index]
- - self.timestamps[state_start_index]
- )
-
- prev_state_power = self.data[prev_state_start_index:prev_state_stop_index]
-
- transition_timestamps = self.timestamps[
- transition_start_index:transition_stop_index
- ]
- transition_power = self.data[transition_start_index:transition_stop_index]
-
- state_timestamps = self.timestamps[state_start_index:state_stop_index]
- state_power = self.data[state_start_index:state_stop_index]
-
- transition = {
- "isa": "transition",
- "W_mean": np.mean(transition_power),
- "W_std": np.std(transition_power),
- "s": transition_duration,
- }
- if self.with_traces:
- transition["plot"] = (
- transition_timestamps - transition_timestamps[0],
- transition_power,
- )
-
- state = {
- "isa": "state",
- "W_mean": np.mean(state_power),
- "W_std": np.std(state_power),
- "s": state_duration,
- }
- if self.with_traces:
- state["plot"] = (state_timestamps - state_timestamps[0], state_power)
-
- transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
- prev_state_power
- )
- transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
-
- energy_trace.append(transition)
- energy_trace.append(state)
-
- return energy_trace