diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-16 08:38:24 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-16 08:38:24 +0100 |
commit | 162a0c287f5dab664e9168a60d76c9f8da07e46a (patch) | |
tree | 1c9ffba567b7d93e5fc33c73180842fc3d174bc5 /lib/model.py | |
parent | 924b96a1852faffddb24b01723833b6356d01c98 (diff) |
move codependent parameter detection to Model / ModelAttribute
Still TODO: Ignore codependent parameters when partitioning data for
analytic modeling / regression
Diffstat (limited to 'lib/model.py')
-rw-r--r-- | lib/model.py | 5 |
1 files changed, 4 insertions, 1 deletions
diff --git a/lib/model.py b/lib/model.py index 829ca37..75f7195 100644 --- a/lib/model.py +++ b/lib/model.py @@ -5,7 +5,7 @@ import numpy as np import os from .automata import PTA, ModelAttribute from .functions import StaticFunction, SubstateFunction -from .parameters import ParallelParamStats +from .parameters import ParallelParamStats, codependent_param_dict from .paramfit import ParallelParamFit from .utils import soft_cast_int, by_name_to_by_param, regression_measures @@ -126,10 +126,12 @@ class AnalyticModel: return f"AnalyticModel<names=[{names}]>" def _compute_stats(self, by_name): + paramstats = ParallelParamStats() for name, data in by_name.items(): self.attr_by_name[name] = dict() + codependent_param = codependent_param_dict(data["param"]) for attr in data["attributes"]: model_attr = ModelAttribute( name, @@ -138,6 +140,7 @@ class AnalyticModel: data["param"], self.parameters, self._num_args.get(name, 0), + codependent_param=codependent_param, ) self.attr_by_name[name][attr] = model_attr paramstats.enqueue((name, attr), model_attr) |