summaryrefslogtreecommitdiff
path: root/lib/nn.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2021-06-25 11:02:34 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2021-06-25 11:02:34 +0200
commitcfc020343c4792828462ece5b398153a306ac033 (patch)
tree4944ebc67a8e979cc42285b7b4b0366a988b3c8f /lib/nn.py
parent6af715d4f5d0af3f3c1c1e2ce69b4db209251c54 (diff)
add nn module
Diffstat (limited to 'lib/nn.py')
-rw-r--r--lib/nn.py118
1 files changed, 118 insertions, 0 deletions
diff --git a/lib/nn.py b/lib/nn.py
new file mode 100644
index 0000000..d88602f
--- /dev/null
+++ b/lib/nn.py
@@ -0,0 +1,118 @@
+#!/usr/bin/env python3
+
+from .utils import flatten
+import re
+
+
+class LayerInfo:
+ def __init__(self, line):
+ node_type, start, first, avg, _, _, _, _, name = line.split(", ")
+ self.node_type = node_type
+ self.avg_ms = float(avg)
+
+ name = name.rstrip("0123456789")
+
+ name = name.removeprefix("[")
+ name = name.removesuffix("]:")
+
+ self.name = name
+ self.ops = name.split(";")
+ # xnnpack separates via "\t "
+ self.ops = flatten(map(lambda op: op.split("\t "), self.ops))
+ self._matched_layers = list()
+ self._match_complete = False
+
+ self.blocks = set()
+
+ for op in self.ops:
+ subs = op.split("/")
+ if len(subs) > 1:
+ self.blocks.add(subs[1])
+
+ # print(f"{self.node_type:30s} {self.avg_ms:.2f} {self.ops}")
+
+ def __repr__(self):
+ return f"<{self.node_type} {self.ops}>"
+
+ def match_tf_layer(self, tf_layer):
+ for op in self.ops:
+ if f"/{tf_layer.name}/" in op or f"/{tf_layer.name}_" in op:
+ self._matched_layers.append(tf_layer)
+ if len(self.ops) == len(self._matched_layers):
+ self._match_complete = True
+ return True
+ return False
+
+ def match_complete(self, seen_ops):
+ if self._match_complete:
+ return True
+ for need_op in self.ops:
+ found = False
+ for have_op in seen_ops:
+ if f"/{have_op}/" in need_op or f"/{have_op}_" in need_op:
+ found = True
+ break
+ if not found:
+ return False
+ return True
+
+
+def load_tflite_profiling_csv(filename):
+ layers = list()
+ state = "intro"
+ with open(filename, "r") as f:
+ for line in f:
+ line = line.strip()
+ if (
+ state == "intro"
+ and line == "Operator-wise Profiling Info for Regular Benchmark Runs:"
+ ):
+ state = "opheader"
+ elif (
+ state == "opheader"
+ and line
+ == "node type, start, first, avg_ms, %, cdf%, mem KB, times called, name"
+ ):
+ state = "ops"
+ elif state == "ops" and line == "":
+ state = "intro2"
+ elif state == "ops":
+ layers.append(LayerInfo(line))
+ return layers
+
+
+def load_tflite(filename):
+ num_threads = None
+ with_xnn = False
+ model_size = None
+ memory_footprint = None
+ inference_time = None
+ with open(filename, "r") as f:
+ for line in f:
+ match = re.match(r"Num threads: \[(\d+)\]", line)
+ if match:
+ num_threads = int(match.group(1))
+ match = re.match(r"The input model file size \(MB\): ([0-9.]+)", line)
+ if match:
+ model_size = float(match.group(1))
+ match = re.match(
+ r"Peak memory footprint \(MB\): init=[0-9.e+-]+ overall=([0-9.e+-]+)",
+ line,
+ )
+ if match:
+ memory_footprint = float(match.group(1))
+ match = re.match(
+ r"Inference timings in us: Init: [0-9.e+-]+, First inference: [0-9.e+-]+, Warmup \(avg\): [0-9.e+-]+, Inference \(avg\): ([0-9.e+-]+)",
+ line,
+ )
+ if match:
+ inference_time = float(match.group(1))
+ if line == "Use xnnpack: [1]":
+ with_xnn = True
+ return {
+ "num_threads": num_threads,
+ "with_xnn": with_xnn,
+ "model_size_mb": model_size,
+ "memory_footprint_mb": memory_footprint,
+ "inference_time_us": inference_time,
+ }