summaryrefslogtreecommitdiff
path: root/lib/workload.py
diff options
context:
space:
mode:
authorBirte Kristina Friesel <birte.friesel@uos.de>2025-03-24 14:08:25 +0100
committerBirte Kristina Friesel <birte.friesel@uos.de>2025-03-24 14:08:25 +0100
commitc6d4e8b0f4a9295006236f8f50cac6bc3e0d00db (patch)
treec89ed06b8961dc7ed356492b34c818d8331b8cdc /lib/workload.py
parentc38015375ef14b54f918599297a6a21da41c9dec (diff)
Workload is an EventSequenceModel, actually
Diffstat (limited to 'lib/workload.py')
-rw-r--r--lib/workload.py77
1 files changed, 0 insertions, 77 deletions
diff --git a/lib/workload.py b/lib/workload.py
deleted file mode 100644
index 3e4f1f8..0000000
--- a/lib/workload.py
+++ /dev/null
@@ -1,77 +0,0 @@
-#!/usr/bin/env python3
-
-import logging
-from . import utils
-
-logger = logging.getLogger(__name__)
-
-
-class Workload:
- def __init__(self, models):
- self.models = models
-
- def _event_normalizer(self, event):
- event_normalizer = lambda p: p
- if "/" in event:
- v1, v2 = event.split("/")
- if utils.is_numeric(v1):
- event = v2.strip()
- event_normalizer = lambda p: utils.soft_cast_float(v1) / p
- elif utils.is_numeric(v2):
- event = v1.strip()
- event_normalizer = lambda p: p / utils.soft_cast_float(v2)
- else:
- raise RuntimeError(f"Cannot parse '{event}'")
- return event, event_normalizer
-
- def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False):
- for event in events:
- event, event_normalizer = self._event_normalizer(event)
- nn, param = event.split("(")
- name, action = nn.split(".")
- param_model = None
- ref_model = None
-
- for model in self.models:
- if name in model.names and action in model.attributes(name):
- ref_model = model
- if use_lut:
- param_model = model.get_param_lut(allow_none=True)
- else:
- param_model, param_info = model.get_fitted()
- break
-
- if param_model is None:
- raise RuntimeError(f"Did not find a model for {name}.{action}")
-
- param = param.removesuffix(")")
- if param == "":
- param = dict()
- else:
- param = utils.parse_conf_str(param)
-
- param_list = utils.param_dict_to_list(param, ref_model.parameters)
-
- if not use_lut and not param_info(name, action).is_predictable(param_list):
- logging.warning(
- f"Cannot predict {name}.{action}({param}), falling back to static model"
- )
-
- try:
- event_output = event_normalizer(
- param_model(
- name,
- action,
- param=param_list,
- )
- )
- except KeyError:
- logging.error(f"Cannot predict {name}.{action}({param}) from LUT model")
- raise
-
- if aggregate == "sum":
- aggregate_init += event_output
- else:
- raise RuntimeError(f"Unknown aggregate type: {aggregate}")
-
- return aggregate_init