summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorBirte Kristina Friesel <birte.friesel@uos.de>2024-03-08 08:45:09 +0100
committerBirte Kristina Friesel <birte.friesel@uos.de>2024-03-08 08:45:09 +0100
commit22e116e51462aa98321c88f375dabf973b0ab2c2 (patch)
tree14d0dd107ac848cfe2a7cd1bddbe7e4c5870e947 /lib
parent52f9a8ee5808db71412ddc3429d2f63f947b1d1c (diff)
move fit_parameters check to helper function
Diffstat (limited to 'lib')
-rw-r--r--lib/functions.py86
1 files changed, 26 insertions, 60 deletions
diff --git a/lib/functions.py b/lib/functions.py
index 88ecb76..47f2983 100644
--- a/lib/functions.py
+++ b/lib/functions.py
@@ -615,6 +615,13 @@ class SKLearnRegressionFunction(ModelFunction):
)
self.fit_success = None
+ def _check_fit_param(self, fit_parameters, name, step):
+ if fit_parameters.shape[1] == 0:
+ logger.warning(f"Cannot generate {name}: {step} removed all parameters")
+ self.fit_success = False
+ return False
+ return True
+
def _preprocess_parameters(self, fit_parameters, data):
if dfatool_preproc_relevance_method == "mi":
return self._preprocess_parameters_mi(fit_parameters, data)
@@ -785,20 +792,12 @@ class CARTFunction(SKLearnRegressionFunction):
)
)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot generate CART due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape after param_to_ndarray is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(fit_parameters, "CART", "param_to_ndarray"):
return self
fit_parameters = self._preprocess_parameters(fit_parameters, data)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot generate CART due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape after pre-processing is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(fit_parameters, "CART", "preprocessing"):
return self
logger.debug("Fitting sklearn CART ...")
@@ -962,20 +961,13 @@ class LMTFunction(SKLearnRegressionFunction):
with_nan=False,
categorical_to_scalar=self.categorical_to_scalar,
)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot generate LMT due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
- )
- self.fit_success = False
+
+ if not self._check_fit_param(fit_parameters, "LMT", "param_to_ndarray"):
return self
fit_parameters = self._preprocess_parameters(fit_parameters, data)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot generate LMT due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape after pre-processing is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(fit_parameters, "LMT", "preprocessing"):
return self
logger.debug("Fitting LMT ...")
@@ -1106,20 +1098,13 @@ class LightGBMFunction(SKLearnRegressionFunction):
with_nan=False,
categorical_to_scalar=self.categorical_to_scalar,
)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot run LightGBM due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
- )
- self.fit_success = False
+
+ if not self._check_fit_param(fit_parameters, "LightGBM", "param_to_ndarray"):
return self
fit_parameters = self._preprocess_parameters(fit_parameters, data)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot generate LightGBM due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape after pre-processing is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(fit_parameters, "LightGBM", "preprocessing"):
return self
import dfatool.lightgbm as lightgbm
@@ -1295,20 +1280,13 @@ class XGBoostFunction(SKLearnRegressionFunction):
with_nan=False,
categorical_to_scalar=self.categorical_to_scalar,
)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot run XGBoost due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
- )
- self.fit_success = False
+
+ if not self._check_fit_param(fit_parameters, "XGBoost", "param_to_ndarray"):
return self
fit_parameters = self._preprocess_parameters(fit_parameters, data)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot run XGBoost due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape after pre-processing is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(fit_parameters, "XGBoost", "preprocessing"):
return self
import xgboost
@@ -1495,20 +1473,16 @@ class SymbolicRegressionFunction(SKLearnRegressionFunction):
ignore_indexes=ignore_param_indexes,
)
- if fit_parameters.shape[1] == 0:
- logger.debug(
- f"Cannot use Symbolic Regression due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(
+ fit_parameters, "Symbolic Regression", "param_to_ndarray"
+ ):
return self
fit_parameters = self._preprocess_parameters(fit_parameters, data)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot use Symbolic Regression due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape after pre-processing is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(
+ fit_parameters, "Symbolic Regression", "preprocessing"
+ ):
return self
from dfatool.gplearn.genetic import SymbolicRegressor
@@ -1570,20 +1544,12 @@ class FOLFunction(ModelFunction):
ignore_indexes=ignore_param_indexes,
)
- if fit_parameters.shape[1] == 0:
- logger.debug(
- f"Cannot run FOL due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(fit_parameters, "FOL", "param_to_ndarray"):
return self
fit_parameters = self._preprocess_parameters(fit_parameters, data)
- if fit_parameters.shape[1] == 0:
- logger.warning(
- f"Cannot run FOL due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape after pre-processing is {fit_parameters.shape}"
- )
- self.fit_success = False
+ if not self._check_fit_param(fit_parameters, "FOL", "preprocessing"):
return self
fit_parameters = fit_parameters.swapaxes(0, 1)