summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2022-02-02 13:38:58 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2022-02-02 13:38:58 +0100
commit5dff95b21fea5198976168b3635d29395a2dfd1d (patch)
tree5e4d591b034e657c079d9154ceb3dfc327a60b2e /lib
parent8c118d357ad873349a2ae00ccf9bcd093c448df0 (diff)
build_dtree: improve debug output
Diffstat (limited to 'lib')
-rw-r--r--lib/parameters.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index 38b4262..158ba93 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -905,7 +905,7 @@ class ModelAttribute:
)
if fit_parameters.shape[1] == 0:
logger.warning(
- f"Cannot generate CART due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
+ f"Cannot generate CART for {self.name} {self.attr} due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
)
self.model_function = df.StaticFunction(np.mean(data))
return
@@ -935,7 +935,7 @@ class ModelAttribute:
)
if fit_parameters.shape[1] == 0:
logger.warning(
- f"Cannot run XGBoost due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
+ f"Cannot run XGBoost for {self.name} {self.attr} due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
)
self.model_function = df.StaticFunction(np.mean(data))
return
@@ -960,14 +960,14 @@ class ModelAttribute:
)
if fit_parameters.shape[1] == 0:
logger.warning(
- f"Cannot generate LMT due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
+ f"Cannot generate LMT for {self.name} {self.attr} due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
)
self.model_function = df.StaticFunction(np.mean(data))
return
try:
lmt.fit(fit_parameters, data)
except np.linalg.LinAlgError as e:
- logger.error(f"LMT generated failed: {e}")
+ logger.error(f"LMT generation for {self.name} {self.attr} failed: {e}")
self.model_function = df.StaticFunction(np.mean(data))
return
self.model_function = df.LMTFunction(
@@ -977,7 +977,7 @@ class ModelAttribute:
if loss_ignore_scalar and not with_function_leaves:
logger.warning(
- "build_dtree called with loss_ignore_scalar=True, with_function_leaves=False. This does not make sense."
+ "build_dtree {self.name} {self.attr} called with loss_ignore_scalar=True, with_function_leaves=False. This does not make sense."
)
self.model_function = self._build_dtree(
@@ -1103,8 +1103,8 @@ class ModelAttribute:
if ffs_feasible:
# try generating a function. if it fails, model_function is a StaticFunction.
ma = ModelAttribute(
- "tmp",
- "tmp",
+ self.name + "_",
+ self.attr,
data,
parameters,
self.param_names,