diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2021-02-24 14:58:47 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2021-02-24 14:58:47 +0100 |
commit | fde97233d5e0bf8d9c357bac48caa8b5ac2c7a82 (patch) | |
tree | b73b6dc8774552a6f3e2b76c3715ccf58c2e28cc /lib | |
parent | 4c277009e2787cf9b82a899b700c63214da0dc20 (diff) |
cluster and re-fit sub-states
Diffstat (limited to 'lib')
-rw-r--r-- | lib/model.py | 163 |
1 files changed, 91 insertions, 72 deletions
diff --git a/lib/model.py b/lib/model.py index 9765274..7f054f5 100644 --- a/lib/model.py +++ b/lib/model.py @@ -819,6 +819,12 @@ class PTAModel(AnalyticModel): self._compute_stats(by_name) + if self.pelt is not None: + # cluster_substates alters submodel_by_name, so we cannot use its keys() iterator. + names_with_submodel = list(self.submodel_by_name.keys()) + for name in names_with_submodel: + self.cluster_substates(name) + np.seterr("raise") def __repr__(self): @@ -1019,86 +1025,99 @@ class PTAModel(AnalyticModel): if len(data): self.mk_submodel(name, substate_counts, data) - self.cluster_substates() + def cluster_substates(self, p_name): + from sklearn.cluster import AgglomerativeClustering - def cluster_substates(self): + submodel = self.submodel_by_name[p_name] # Für nicht parameterabhängige Teilzustände: # - Dauer ± max(1%, 20µs) -> merge OK # - Leistung ± max(5%, 10 µW) -> merge OK # Besser in zwei Schritten oder besser gemeinsam? Das Problem ist, dass die distance_threshold nicht nach # Dimensionen unterscheidet. - for p_name, submodel in self.submodel_by_name.items(): - sub_attr_by_function = dict() - static = submodel.get_static() - param, param_info = submodel.get_fitted() - for name in submodel.names: - d_info = param_info(name, "duration") - p_info = param_info(name, "power") - if d_info: - d_info = d_info["function"].model_function - if p_info: - p_info = p_info["function"].model_function - key = (d_info, p_info) - if key not in sub_attr_by_function: - sub_attr_by_function[key] = list() - sub_attr_by_function[key].append(name) - - print(sub_attr_by_function) - - if (None, None) in sub_attr_by_function: - from sklearn.cluster import AgglomerativeClustering - - values_to_cluster = np.zeros( - (len(sub_attr_by_function[(None, None)]), 1) - ) - for i, name in enumerate(sub_attr_by_function[(None, None)]): - values_to_cluster[i, 0] = static(name, "duration") - - cluster = AgglomerativeClustering( - n_clusters=None, - compute_full_tree=True, - affinity="euclidean", - linkage="ward", - distance_threshold=50, - ) - cluster.fit_predict(values_to_cluster) - for i, name in enumerate(sub_attr_by_function[(None, None)]): - print(i, cluster.labels_[i], values_to_cluster[i]) + # Für parameterabhängige / allgemein: param_lut statt static nutzen. + # values_to_cluster[i, 0] = duration für paramvektor 1 (fallback static duration) + # values_to_cluster[i, 1] = duration für paramvektor 2 (fallback static duration) + # etc. -> wenn die lut für alle Parameter ähnlich ist, wird gemerged. Das funktioniert auch bei geringfügigen + # Schwankungen, die beim separaten Fitting zu unterschiedlichen Funktionen führen würden. + p_attr = self.attr_by_name[p_name]["power"] + p_params = list(set(map(tuple, p_attr.param_values))) + p_param_index = dict() + for i, p_param in enumerate(p_params): + p_param_index[p_param] = i + sub_attr_by_function = dict() + static = submodel.get_static() + lut = submodel.get_param_lut(fallback=True) + values_to_cluster = np.zeros((len(submodel.names), len(p_param_index))) + for i, name in enumerate(submodel.names): + for j, param in enumerate(p_params): + values_to_cluster[i, j] = lut(name, "duration", param=param) + + clusters = list() + + d_cluster = AgglomerativeClustering( + n_clusters=None, + compute_full_tree=True, + affinity="euclidean", + linkage="ward", + distance_threshold=50, + ) + d_cluster.fit_predict(values_to_cluster) + + for d_cluster_i in range(d_cluster.n_clusters_): + cl_substates = list() + for i, name in enumerate(submodel.names): + if d_cluster.labels_[i] == d_cluster_i: + cl_substates.append(name) + if len(cl_substates) == 1: + clusters.append(cl_substates) + continue + values_to_cluster = np.zeros((len(cl_substates), len(p_param_index))) + for i, name in enumerate(cl_substates): + for j, param in enumerate(p_params): + values_to_cluster[i, j] = lut(name, "power", param=param) + p_cluster = AgglomerativeClustering( + n_clusters=None, + compute_full_tree=True, + affinity="euclidean", + linkage="ward", + distance_threshold=500, + ) + p_cluster.fit_predict(values_to_cluster) + for p_cluster_i in range(p_cluster.n_clusters_): + cluster = list() + for i, name in enumerate(cl_substates): + if p_cluster.labels_[i] == p_cluster_i: + cluster.append(name) + clusters.append(cluster) - values_to_cluster = np.zeros( - (len(sub_attr_by_function[(None, None)]), 1) - ) - for i, name in enumerate(sub_attr_by_function[(None, None)]): - values_to_cluster[i, 0] = static(name, "power") - - cluster = AgglomerativeClustering( - n_clusters=None, - compute_full_tree=True, - affinity="euclidean", - linkage="ward", - distance_threshold=200, + logger.debug(f"sub-state clusters = {clusters}") + + by_name = dict() + new_subname_by_old = dict() + for i, cluster in enumerate(clusters): + sub_name = f"{p_name}.{i}" + durations = list() + powers = list() + param_values = list() + for substate in cluster: + new_subname_by_old[substate] = sub_name + durations.extend(submodel.attr_by_name[substate]["duration"].data) + powers.extend(submodel.attr_by_name[substate]["power"].data) + param_values.extend( + submodel.attr_by_name[substate]["power"].param_values ) - cluster.fit_predict(values_to_cluster) - for i, name in enumerate(sub_attr_by_function[(None, None)]): - print(i, cluster.labels_[i], values_to_cluster[i]) - - # substate_counts = dict() - # for k, (num_substates, _, substate_data) in substates_by_param.items(): - # if k[0] == name and num_substates > 1: - # for datapoint in substates_by_param[k][2]: - # for i, sc in enumerate(substates_by_param[k][0]): - # if sc not in substate_counts: - # substate_counts[sc] = list() - # if sc > 1: - # # substates_by_param[k][substate index]["power"] = [mean power of substate in first iteration, ...] - # substate_counts[sc].append((k[1], substates_by_param[k][1][1][i], substates_by_param[k][1][2][i])) - # for substate_count in substate_counts.keys(): - # self.mk_submodel(name, substate_count, substate_counts[substate_count]) - - # TODO Für alle n>1 mit "Es gibt Parameterkombinationen mit n Teilzuständen": - # Für jeden Teilzustand ein neues ModelAttribute erzeugen, das nur aus den - # Teilzuständen von Parameterkombinationen mit n Teilzuständen erzeugt wird. - # Dann diese jeweils fitten. + by_name[sub_name] = { + "isa": "state", + "param": param_values, + "attributes": ["duration", "power"], + "duration": durations, + "power": powers, + } + self.submodel_by_name[p_name] = PTAModel(by_name, self.parameters, dict()) + for k in self.substate_sequence_by_nc.keys(): + self.substate_sequence_by_nc[k] = list( + map(lambda x: new_subname_by_old[x], self.substate_sequence_by_nc[k]) + ) # data[0] = [first sub-state, second sub-state, ...] # data[1] = [first sub-state, second sub-state, ...] |