diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-03 09:36:43 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-03 09:36:43 +0100 |
commit | f33c69dcaf24ecc7e039dec83a4a5c74908da52f (patch) | |
tree | df5ada7af874161f70d866b4f8c1d878f1a373cc /test/test_timingharness.py | |
parent | d0d3f335739d9333f15ede487574f78f1eb5e638 (diff) |
Remove ModelInfo; add info to ModelFunction instead
Diffstat (limited to 'test/test_timingharness.py')
-rwxr-xr-x | test/test_timingharness.py | 56 |
1 files changed, 28 insertions, 28 deletions
diff --git a/test/test_timingharness.py b/test/test_timingharness.py index 8c68e4a..06edc16 100755 --- a/test/test_timingharness.py +++ b/test/test_timingharness.py @@ -1,6 +1,6 @@ #!/usr/bin/env python3 -from dfatool.functions import StaticInfo +from dfatool.functions import StaticFunction from dfatool.loader import TimingData, pta_trace_to_aggregate from dfatool.model import AnalyticModel from dfatool.parameters import prune_dependent_parameters @@ -31,25 +31,25 @@ class TestModels(unittest.TestCase): ) param_model, param_info = model.get_fitted() - self.assertIsInstance(param_info("setPALevel", "duration"), StaticInfo) - self.assertIsInstance(param_info("setRetries", "duration"), StaticInfo) - self.assertIsInstance(param_info("setup", "duration"), StaticInfo) + self.assertIsInstance(param_info("setPALevel", "duration"), StaticFunction) + self.assertIsInstance(param_info("setRetries", "duration"), StaticFunction) + self.assertIsInstance(param_info("setup", "duration"), StaticFunction) self.assertEqual( - param_info("write", "duration").function.model_function, + param_info("write", "duration").model_function, "0 + regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay)", ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[0], 1163, places=0 + param_info("write", "duration").model_args[0], 1163, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[1], 464, places=0 + param_info("write", "duration").model_args[1], 464, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[2], 1, places=0 + param_info("write", "duration").model_args[2], 1, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[3], 1, places=0 + param_info("write", "duration").model_args[3], 1, places=0 ) def test_dependent_parameter_pruning(self): @@ -78,26 +78,26 @@ class TestModels(unittest.TestCase): ) param_model, param_info = model.get_fitted() - self.assertIsInstance(param_info("getObserveTx", "duration"), StaticInfo) - self.assertIsInstance(param_info("setPALevel", "duration"), StaticInfo) - self.assertIsInstance(param_info("setRetries", "duration"), StaticInfo) - self.assertIsInstance(param_info("setup", "duration"), StaticInfo) + self.assertIsInstance(param_info("getObserveTx", "duration"), StaticFunction) + self.assertIsInstance(param_info("setPALevel", "duration"), StaticFunction) + self.assertIsInstance(param_info("setRetries", "duration"), StaticFunction) + self.assertIsInstance(param_info("setup", "duration"), StaticFunction) self.assertEqual( - param_info("write", "duration").function.model_function, + param_info("write", "duration").model_function, "0 + regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay)", ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[0], 1163, places=0 + param_info("write", "duration").model_args[0], 1163, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[1], 464, places=0 + param_info("write", "duration").model_args[1], 464, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[2], 1, places=0 + param_info("write", "duration").model_args[2], 1, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[3], 1, places=0 + param_info("write", "duration").model_args[3], 1, places=0 ) def test_function_override(self): @@ -136,29 +136,29 @@ class TestModels(unittest.TestCase): ) param_model, param_info = model.get_fitted() - self.assertIsInstance(param_info("setAutoAck", "duration"), StaticInfo) - self.assertIsInstance(param_info("setPALevel", "duration"), StaticInfo) - self.assertIsInstance(param_info("setRetries", "duration"), StaticInfo) - self.assertIsInstance(param_info("setup", "duration"), StaticInfo) + self.assertIsInstance(param_info("setAutoAck", "duration"), StaticFunction) + self.assertIsInstance(param_info("setPALevel", "duration"), StaticFunction) + self.assertIsInstance(param_info("setRetries", "duration"), StaticFunction) + self.assertIsInstance(param_info("setup", "duration"), StaticFunction) self.assertEqual( - param_info("write", "duration").function.model_function, + param_info("write", "duration").model_function, "(parameter(auto_ack!) * (regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay))) + ((1 - parameter(auto_ack!)) * regression_arg(4))", ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[0], 1162, places=0 + param_info("write", "duration").model_args[0], 1162, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[1], 464, places=0 + param_info("write", "duration").model_args[1], 464, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[2], 1, places=0 + param_info("write", "duration").model_args[2], 1, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[3], 1, places=0 + param_info("write", "duration").model_args[3], 1, places=0 ) self.assertAlmostEqual( - param_info("write", "duration").function.model_args[4], 1086, places=0 + param_info("write", "duration").model_args[4], 1086, places=0 ) os.environ.pop("DFATOOL_NO_DECISIONTREES") |