summaryrefslogtreecommitdiff
path: root/test
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-07-06 10:26:09 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-07-06 10:26:09 +0200
commitf126d8b2d69e048627117f33f817cf22cc2e0e96 (patch)
treeb23fcf136585b5e307d3b41fccbcf11d23c8ab08 /test
parent1ec48f55c80492c5ee7ee7e4d3ed7cd0eccd9a1c (diff)
make test_parameters work with NumPy <= 1.16
The RNG has been introduced in NumPy 1.17, which is not yet available in DebianStable
Diffstat (limited to 'test')
-rwxr-xr-xtest/test_parameters.py15
1 files changed, 10 insertions, 5 deletions
diff --git a/test/test_parameters.py b/test/test_parameters.py
index 63562a4..22efccf 100755
--- a/test/test_parameters.py
+++ b/test/test_parameters.py
@@ -25,9 +25,11 @@ class TestModels(unittest.TestCase):
)
def test_parameter_detection_linear(self):
- rng = np.random.default_rng(seed=1312)
+ # rng = np.random.default_rng(seed=1312) # requiresy NumPy >= 1.17
+ np.random.seed(1312)
X = np.arange(200) % 50
- Y = X + rng.normal(size=X.size)
+ # Y = X + rng.normal(size=X.size) # requiry NumPy >= 1.17
+ Y = X + np.random.normal(size=X.size)
parameter_names = ["p_mod5", "p_linear"]
# Test input data:
@@ -90,7 +92,8 @@ class TestModels(unittest.TestCase):
self.assertAlmostEqual(combined_fit.eval([None, i]), i, places=0)
def test_parameter_detection_multi_dimensional(self):
- rng = np.random.default_rng(seed=1312)
+ # rng = np.random.default_rng(seed=1312) # requires NumPy >= 1.17
+ np.random.seed(1312)
# vary each parameter from 1 to 10
Xi = (np.arange(50) % 10) + 1
# Three parameters -> Build input array [[1, 1, 1], [1, 1, 2], ..., [10, 10, 10]]
@@ -104,8 +107,10 @@ class TestModels(unittest.TestCase):
lambda x: 23 + 5 * x[0] - 3 * x[0] / x[1], signature="(n)->()"
)
- Y_lls = f_lls(X) + rng.normal(size=X.shape[0])
- Y_ll = f_ll(X) + rng.normal(size=X.shape[0])
+ # Y_lls = f_lls(X) + rng.normal(size=X.shape[0]) # requires NumPy >= 1.17
+ # Y_ll = f_ll(X) + rng.normal(size=X.shape[0]) # requires NumPy >= 1.17
+ Y_lls = f_lls(X) + np.random.normal(size=X.shape[0])
+ Y_ll = f_ll(X) + np.random.normal(size=X.shape[0])
parameter_names = ["lin_lin", "log_inv", "square_none"]