diff options
-rwxr-xr-x | bin/analyze-log.py | 13 | ||||
-rwxr-xr-x | bin/workload.py | 66 | ||||
-rw-r--r-- | lib/behaviour.py | 77 | ||||
-rw-r--r-- | lib/cli.py | 23 | ||||
-rw-r--r-- | lib/model.py | 32 | ||||
-rw-r--r-- | lib/parameters.py | 4 | ||||
-rw-r--r-- | lib/utils.py | 14 |
7 files changed, 167 insertions, 62 deletions
diff --git a/bin/analyze-log.py b/bin/analyze-log.py index 0b66bdf..50b5648 100755 --- a/bin/analyze-log.py +++ b/bin/analyze-log.py @@ -301,7 +301,7 @@ def main(): if args.export_dot: dfatool.cli.export_dot(model, args.export_dot) - if args.export_dref: + if args.export_dref or args.export_pseudo_dref: dref = model.to_dref( static_quality, lut_quality, @@ -321,9 +321,14 @@ def main(): mutual_information[param] ) - dfatool.cli.export_dataref( - args.export_dref, dref, precision=args.dref_precision - ) + if args.export_pseudo_dref: + dfatool.cli.export_pseudo_dref( + args.export_pseudo_dref, dref, precision=args.dref_precision + ) + if args.export_dref: + dfatool.cli.export_dataref( + args.export_dref, dref, precision=args.dref_precision + ) if args.export_json: with open(args.export_json, "w") as f: diff --git a/bin/workload.py b/bin/workload.py index ee2df0d..72b66bb 100755 --- a/bin/workload.py +++ b/bin/workload.py @@ -6,6 +6,7 @@ import logging import sys import dfatool.cli import dfatool.utils +from dfatool.behaviour import EventSequenceModel from dfatool.model import AnalyticModel @@ -39,6 +40,11 @@ def main(): type=str, help="Path to model file (.json or .json.xz)", ) + parser.add_argument( + "--use-lut", + action="store_true", + help="Use LUT rather than performance model for prediction", + ) parser.add_argument("event", nargs="+", type=str) args = parser.parse_args() @@ -61,58 +67,18 @@ def main(): if args.info: for i in range(len(models)): print(f"""{args.models[i]}: {" ".join(models[i].parameters)}""") + _, param_info = models[i].get_fitted() for name in models[i].names: for attr in models[i].attributes(name): - print(f" {name}.{attr}") - - aggregate = args.aggregate_init - for event in args.event: - - event_normalizer = lambda p: p - if "/" in event: - v1, v2 = event.split("/") - if dfatool.utils.is_numeric(v1): - event = v2.strip() - event_normalizer = lambda p: dfatool.utils.soft_cast_float(v1) / p - elif dfatool.utils.is_numeric(v2): - event = v1.strip() - event_normalizer = lambda p: p / dfatool.utils.soft_cast_float(v2) - else: - raise RuntimeError(f"Cannot parse '{event}'") - - nn, param = event.split("(") - name, action = nn.split(".") - param_model = None - ref_model = None - for model in models: - if name in model.names and action in model.attributes(name): - ref_model = model - param_model, param_info = model.get_fitted() - break - assert param_model is not None - param = param.removesuffix(")") - if param == "": - param = dict() - else: - param = dfatool.utils.parse_conf_str(param) - - param_list = dfatool.utils.param_dict_to_list(param, ref_model.parameters) - - if not param_info(name, action).is_predictable(param_list): - logging.warning( - f"Cannot predict {name}.{action}({param}), falling back to static model" - ) - - event_output = event_normalizer( - param_model( - name, - action, - param=param_list, - ) - ) - - if args.aggregate == "sum": - aggregate += event_output + print(f" {name}.{attr} {param_info(name, attr)}") + + workload = EventSequenceModel(models) + aggregate = workload.eval_strs( + args.event, + aggregate=args.aggregate, + aggregate_init=args.aggregate_init, + use_lut=args.use_lut, + ) if args.normalize_output: sf = dfatool.cli.parse_shift_function( diff --git a/lib/behaviour.py b/lib/behaviour.py new file mode 100644 index 0000000..402ddc7 --- /dev/null +++ b/lib/behaviour.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python3 + +import logging +from . import utils + +logger = logging.getLogger(__name__) + + +class EventSequenceModel: + def __init__(self, models): + self.models = models + + def _event_normalizer(self, event): + event_normalizer = lambda p: p + if "/" in event: + v1, v2 = event.split("/") + if utils.is_numeric(v1): + event = v2.strip() + event_normalizer = lambda p: utils.soft_cast_float(v1) / p + elif utils.is_numeric(v2): + event = v1.strip() + event_normalizer = lambda p: p / utils.soft_cast_float(v2) + else: + raise RuntimeError(f"Cannot parse '{event}'") + return event, event_normalizer + + def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False): + for event in events: + event, event_normalizer = self._event_normalizer(event) + nn, param = event.split("(") + name, action = nn.split(".") + param_model = None + ref_model = None + + for model in self.models: + if name in model.names and action in model.attributes(name): + ref_model = model + if use_lut: + param_model = model.get_param_lut(allow_none=True) + else: + param_model, param_info = model.get_fitted() + break + + if param_model is None: + raise RuntimeError(f"Did not find a model for {name}.{action}") + + param = param.removesuffix(")") + if param == "": + param = dict() + else: + param = utils.parse_conf_str(param) + + param_list = utils.param_dict_to_list(param, ref_model.parameters) + + if not use_lut and not param_info(name, action).is_predictable(param_list): + logging.warning( + f"Cannot predict {name}.{action}({param}), falling back to static model" + ) + + try: + event_output = event_normalizer( + param_model( + name, + action, + param=param_list, + ) + ) + except KeyError: + logging.error(f"Cannot predict {name}.{action}({param}) from LUT model") + raise + + if aggregate == "sum": + aggregate_init += event_output + else: + raise RuntimeError(f"Unknown aggregate type: {aggregate}") + + return aggregate_init @@ -331,6 +331,23 @@ def model_quality_table( print(buf) +def export_pseudo_dref(dref_file, dref, precision=None): + with open(dref_file, "w") as f: + for k, v in sorted(os.environ.items(), key=lambda kv: kv[0]): + if k.startswith("DFATOOL_"): + print(f"% {k}='{v}'", file=f) + for arg in sys.argv: + print(f"% {arg}", file=f) + for k, v in sorted(dref.items()): + k = k.replace("/", "I").replace("-", "").replace(" ", "") + if type(v) is tuple: + v = v[0] + if type(v) in (float, np.float64) and precision is not None: + print("\\def\\" + k + "{" + f"{v:.{precision}f}" + "}", file=f) + else: + print("\\def\\" + k + "{" + str(v) + "}", file=f) + + def export_dataref(dref_file, dref, precision=None): with open(dref_file, "w") as f: for k, v in sorted(os.environ.items(), key=lambda kv: kv[0]): @@ -493,6 +510,12 @@ def add_standard_arguments(parser): help="Export tree-based model to {PREFIX}{name}-{attribute}.dot", ) parser.add_argument( + "--export-pseudo-dref", + metavar="FILE", + type=str, + help="Export model and model quality to LaTeX def file (sort of like dataref)", + ) + parser.add_argument( "--export-dref", metavar="FILE", type=str, diff --git a/lib/model.py b/lib/model.py index 0026249..dbe05aa 100644 --- a/lib/model.py +++ b/lib/model.py @@ -20,6 +20,7 @@ from .utils import ( by_name_to_by_param, by_param_to_by_name, regression_measures, + param_eq_or_none, ) logger = logging.getLogger(__name__) @@ -85,6 +86,7 @@ class AnalyticModel: compute_stats=True, force_tree=False, max_std=None, + by_param=None, from_json=None, ): """ @@ -154,9 +156,18 @@ class AnalyticModel: for name, name_data in from_json["name"].items(): self.attr_by_name[name] = dict() for attr, attr_data in name_data.items(): - self.attr_by_name[name][attr] = ModelAttribute.from_json( - name, attr, attr_data - ) + if by_param: + self.attr_by_name[name][attr] = ModelAttribute.from_json( + name, + attr, + attr_data, + data_values=by_name[name][attr], + param_values=by_name[name]["param"], + ) + else: + self.attr_by_name[name][attr] = ModelAttribute.from_json( + name, attr, attr_data + ) self.fit_done = True return @@ -255,7 +266,7 @@ class AnalyticModel: return static_model_getter - def get_param_lut(self, use_mean=False, fallback=False): + def get_param_lut(self, use_mean=False, fallback=False, allow_none=False): """ Get parameter-look-up-table model function: name, attribute, parameter values -> model value. @@ -285,7 +296,16 @@ class AnalyticModel: try: return lut_model[name][key][param] except KeyError: - if fallback: + if allow_none: + keys = filter( + lambda p: param_eq_or_none(param, p), + lut_model[name][key].keys(), + ) + values = list(map(lambda p: lut_model[name][key][p], keys)) + if not values: + raise + return np.mean(values) + elif fallback: return static_model[name][key] raise params = kwargs["params"] @@ -684,7 +704,7 @@ class AnalyticModel: for (nk, pk), v in data["byParam"]: by_param[(nk, tuple(pk))] = v by_name = by_param_to_by_name(by_param) - return cls(by_name, data["parameters"], from_json=data) + return cls(by_name, data["parameters"], by_param=by_param, from_json=data) else: assert data["parameters"] == parameters return cls(by_name, parameters, from_json=data) diff --git a/lib/parameters.py b/lib/parameters.py index b648c4c..acb044c 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -731,11 +731,11 @@ class ModelAttribute: return self.mutual_information_cache @classmethod - def from_json(cls, name, attr, data): + def from_json(cls, name, attr, data, data_values=None, param_values=None): param_names = data["paramNames"] arg_count = data["argCount"] - self = cls(name, attr, None, None, param_names, arg_count) + self = cls(name, attr, data_values, param_values, param_names, arg_count) self.model_function = df.ModelFunction.from_json(data["modelFunction"]) self.mean = self.model_function.value diff --git a/lib/utils.py b/lib/utils.py index 208db44..ae0e3f7 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -48,6 +48,8 @@ def running_mean(x: np.ndarray, N: int) -> np.ndarray: def human_readable(value, unit): + if value is None: + return value for prefix, factor in ( ("p", 1e-12), ("n", 1e-9), @@ -207,6 +209,18 @@ def param_slice_eq(a, b, index): return False +def param_eq_or_none(a, b): + """ + Check if by_param keys a and b are identical, allowing a None in a to match any key in b. + """ + set_keys = tuple(filter(lambda i: a[i] is not None, range(len(a)))) + a_not_none = tuple(map(lambda i: a[i], set_keys)) + b_not_none = tuple(map(lambda i: b[i], set_keys)) + if a_not_none == b_not_none: + return True + return False + + def match_parameter_values(input_param: dict, match_param: dict): """ Check whether one of the paramaters in `input_param` has the same value in `match_param`. |