diff options
| -rw-r--r-- | README.md | 11 | ||||
| -rw-r--r-- | lib/behaviour.py | 50 | ||||
| -rw-r--r-- | lib/functions.py | 8 | ||||
| -rw-r--r-- | lib/paramfit.py | 8 |
4 files changed, 45 insertions, 32 deletions
@@ -55,11 +55,11 @@ Least-Squares Regression is essentially a subset of RMT with just a single tree LMT and RMT differ significantly, as LMT uses a learning algorithm that starts out with a DECART and uses bottom-up pruning to turn it into an LMT, whereas RMT build a DECART that only considers parameters that are not suitable for least-squares regression and then uses least-squares regression to find and fit leaf functions. By default, dfatool uses heuristics to determine whether it should generate a simple least-squares regression function or a fully-fledged RMT. -Arguments such as `--force-tree` and environment variables (below) can be used to generate a different flavour of performance model; see [Modeling Method Selection](doc/modeling-method.md). +Arguments such as `--force-tree` and environment variables (below) can be used to generate a different flavour of performance model; see [Modelling Method Selection](doc/modeling-method.md). Again, most of the options and methods documented here work for all three scripts: analyze-archive, analyze-kconfig, and analyze-log. * [Model Visualization and Export](doc/model-visual.md) -* [Modeling Method Selection](doc/modeling-method.md) +* [Modelling Method Selection](doc/modeling-method.md) * [Assessing Model Quality](doc/model-assessment.md) ## Model Application @@ -112,9 +112,9 @@ The following variables may be set to alter the behaviour of dfatool components. | `DFATOOL_KCONF_WITH_CHOICE_NODES` | 0, **1** | Treat kconfig choices (e.g. "choice Model → MobileNet / ResNet / Inception") as enum parameters. If enabled, the corresponding boolean kconfig variables (e.g. "Model\_MobileNet") are not converted to parameters. If disabled, all (and only) boolean kconfig variables are treated as parameters. Mostly relevant for analyze-kconfig, eval-kconfig | | `DFATOOL_COMPENSATE_DRIFT` | **0**, 1 | Perform drift compensation for loaders without sync input (e.g. EnergyTrace or Keysight) | | `DFATOOL_DRIFT_COMPENSATION_PENALTY` | 0 .. 100 (default: majority vote over several penalties) | Specify penalty for ruptures.py PELT changepoint petection | -| `DFATOOL_MODEL` | cart, decart, fol, lgbm, lmt, **rmt**, symreg, uls, xgb | Modeling method. See below for method-specific configuration options. | +| `DFATOOL_MODEL` | cart, decart, fol, lgbm, lmt, **rmt**, symreg, uls, xgb | Modelling method. See below for method-specific configuration options. | | `DFATOOL_RMT_MAX_DEPTH` | **0** .. *n* | Maximum depth for RMT. Default (0): unlimited. | -| `DFATOOL_RMT_SUBMODEL` | cart, fol, static, symreg, **uls** | Modeling method for RMT leaf functions. | +| `DFATOOL_RMT_SUBMODEL` | cart, fol, static, symreg, **uls** | Modelling method for RMT leaf functions. | | `DFATOOL_PREPROCESSING_RELEVANCE_METHOD` | **none**, mi | Ignore parameters deemed irrelevant by the specified heuristic before passing them on to `DFATOOL_MODEL`. | | `DFATOOL_PREPROCESSING_RELEVANCE_THRESHOLD` | .. **0.1** .. | Threshold for relevance heuristic. | | `DFATOOL_CART_MAX_DEPTH` | **0** .. *n* | maximum depth for sklearn CART. Default (0): unlimited. | @@ -133,8 +133,9 @@ The following variables may be set to alter the behaviour of dfatool components. | `DFATOOL_LMT_MIN_SAMPLES_LEAF` | 0.0 .. **0.1** .. 1.0, 3 .. *n* | Minimum samples that each leaf of a split candidate must contain. A value below 1.0 specifies a ratio of the total number of training samples. A value above 1 specifies an absolute number of samples. | | `DFATOOL_LMT_MAX_BINS` | 10 .. **120** | Number of bins used to determine optimal split. LMT default: 25. | | `DFATOOL_LMT_CRITERION` | **mse**, rmse, mae, poisson | Error metric to use when selecting best split. | -| `DFATOOL_ULS_ERROR_METRIC` | **ssr**, rmsd, mae, … | Error metric to use when selecting best-fitting function during unsupervised least squares (ULS) regression. Least squares regression itself minimzes root mean square deviation (rmsd), hence the equivalent (but partitioning-compatible) sum of squared residuals (ssr) is the default. Supports all metrics accepted by `--error-metric`. | +| `DFATOOL_ULS_ERROR_METRIC` | **ssr**, rmsd, **mae**, … | Error metric to use when selecting best-fitting function during unsupervised least squares (ULS) regression. By default, least squares regression minimzes root mean square deviation (rmsd), hence the equivalent (but partitioning-compatible) sum of squared residuals (ssr) is the default. If `DFATOOL_ULS_LOSS_FUNCTION` is set to another value than linear, the default is mean absolute error (mae). Supports all metrics accepted by `--error-metric`. | | `DFATOOL_ULS_FUNCTIONS` | a,b,… | List of function templates to use in ULS. Default: all supported functions. | +| `DFATOOL_ULS_LOSS_FUNCTION` | **linear**', soft\_l1, … | Loss function for least squares fitting, see `scipy.optimize.least_squares#loss` documentation. | | `DFATOOL_ULS_MIN_DISTINCT_VALUES` | 2 .. **3** .. *n* | Minimum number of unique values a parameter must take to be eligible for ULS | | `DFATOOL_ULS_SKIP_CODEPENDENT_CHECK` | **0**, 1 | Do not detect and remove co-dependent features in ULS. | | `DFATOOL_ULS_MIN_BOUND` | **-∞** .. *n* | Lower bound for ULS regression variables. Setting it to 0 can often be beneficial. | diff --git a/lib/behaviour.py b/lib/behaviour.py index fed0f6d..136a55e 100644 --- a/lib/behaviour.py +++ b/lib/behaviour.py @@ -21,9 +21,14 @@ class SDKBehaviourModel: # annotation.start.param may be incomplete, for instance in cases # where DPUs are allocated before the input file is loadeed (and # thus before the problem size is known). - # Hence, we must use annotation.end.param whenever we deal - # with possibly problem size-dependent behaviour. - am_tt_param_names = sorted(annotation.end.param.keys()) + # However, annotation.end.param may also differ from annotation.start.param (it should not, but that's how some benchmarks roll). + # So, we use annotation.start.param if it has the same keys as annotation.end.param, and annotation.end.param otherwise + if sorted(annotation.start.param.keys()) == sorted( + annotation.end.param.keys() + ): + am_tt_param_names = sorted(annotation.start.param.keys()) + else: + am_tt_param_names = sorted(annotation.end.param.keys()) if annotation.name not in delta_by_name: delta_by_name[annotation.name] = dict() delta_param_by_name[annotation.name] = dict() @@ -146,6 +151,12 @@ class SDKBehaviourModel: total_latency_us = 0 + if sorted(annotation.start.param.keys()) == sorted(annotation.end.param.keys()): + param_dict = annotation.start.param + else: + param_dict = annotation.end.param + param_str = utils.param_dict_to_str(param_dict) + if annotation.kernels: # ggf. als dict of tuples, für den Fall dass Schleifen verschieden iterieren können? for i in range(prev_i, annotation.kernels[0].offset): @@ -154,7 +165,7 @@ class SDKBehaviourModel: if this in n_seen: if n_seen[this] == 1: logger.debug( - f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳" + f"Loop found in {annotation.start.name} {param_dict}: {this} ⟳" ) n_seen[this] += 1 else: @@ -164,16 +175,9 @@ class SDKBehaviourModel: delta[prev] = set() delta[prev].add(this) - # annotation.start.param may be incomplete, for instance in cases - # where DPUs are allocated before the input file is loadeed (and - # thus before the problem size is known). - # Hence, we must use annotation.end.param whenever we deal - # with possibly problem size-dependent behaviour. if not (prev, this) in delta_param: delta_param[(prev, this)] = set() - delta_param[(prev, this)].add( - utils.param_dict_to_str(annotation.end.param) - ) + delta_param[(prev, this)].add(param_str) prev = this prev_i = i + 1 @@ -183,7 +187,7 @@ class SDKBehaviourModel: meta_observations.append( { "name": f"__trace__ {this}", - "param": annotation.end.param, + "param": param_dict, "attribute": dict( filter( lambda kv: not kv[0].startswith("e_"), @@ -205,9 +209,7 @@ class SDKBehaviourModel: if not (prev, this) in delta_param: delta_param[(prev, this)] = set() - delta_param[(prev, this)].add( - utils.param_dict_to_str(annotation.end.param) - ) + delta_param[(prev, this)].add(param_str) # The last iteration (next block) contains a single kernel, # so we do not increase total_latency_us here. @@ -225,7 +227,7 @@ class SDKBehaviourModel: meta_observations.append( { "name": f"__trace__ {this}", - "param": annotation.end.param, + "param": param_dict, "attribute": dict( filter( lambda kv: not kv[0].startswith("e_"), @@ -243,7 +245,7 @@ class SDKBehaviourModel: if this in n_seen: if n_seen[this] == 1: logger.debug( - f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳" + f"Loop found in {annotation.start.name} {param_dict}: {this} ⟳" ) n_seen[this] += 1 else: @@ -255,7 +257,7 @@ class SDKBehaviourModel: if not (prev, this) in delta_param: delta_param[(prev, this)] = set() - delta_param[(prev, this)].add(utils.param_dict_to_str(annotation.end.param)) + delta_param[(prev, this)].add(param_str) total_latency_us += observations[i]["attribute"].get("latency_us", 0) @@ -264,7 +266,7 @@ class SDKBehaviourModel: meta_observations.append( { "name": f"__trace__ {this}", - "param": annotation.end.param, + "param": param_dict, "attribute": dict( filter( lambda kv: not kv[0].startswith("e_"), @@ -279,15 +281,13 @@ class SDKBehaviourModel: delta[prev].add("__end__") if not (prev, "__end__") in delta_param: delta_param[(prev, "__end__")] = set() - delta_param[(prev, "__end__")].add( - utils.param_dict_to_str(annotation.end.param) - ) + delta_param[(prev, "__end__")].add(param_str) for transition, count in n_seen.items(): meta_observations.append( { "name": f"__loop__ {transition}", - "param": annotation.end.param, + "param": param_dict, "attribute": {"n_iterations": count}, } ) @@ -296,7 +296,7 @@ class SDKBehaviourModel: meta_observations.append( { "name": annotation.start.name, - "param": annotation.end.param, + "param": param_dict, "attribute": {"latency_us": total_latency_us}, } ) diff --git a/lib/functions.py b/lib/functions.py index 35b04ef..b76814b 100644 --- a/lib/functions.py +++ b/lib/functions.py @@ -27,6 +27,7 @@ dfatool_rmt_relevance_threshold = float( os.getenv("DFATOOL_RMT_RELEVANCE_THRESHOLD", "0.5") ) +dfatool_uls_loss_fun = os.getenv("DFATOOL_ULS_LOSS_FUNCTION", "linear") dfatool_uls_min_bound = float(os.getenv("DFATOOL_ULS_MIN_BOUND", -np.inf)) if dfatool_preproc_relevance_method == "mi": @@ -1692,7 +1693,11 @@ class FOLFunction(SKLearnRegressionFunction): self.model_args = list(np.ones((num_vars))) try: res = optimize.least_squares( - error_function, self.model_args, args=(fit_parameters, data), xtol=2e-15 + error_function, + self.model_args, + args=(fit_parameters, data), + xtol=2e-15, + loss=dfatool_uls_loss_fun, ) except ValueError as err: logger.warning(f"Fit failed: {err} (function: {self.model_function})") @@ -1955,6 +1960,7 @@ class AnalyticFunction(ModelFunction): self.model_args, args=(X, Y), xtol=2e-15, + loss=dfatool_uls_loss_fun, bounds=(lower_bounds, upper_bounds), ) except ValueError as err: diff --git a/lib/paramfit.py b/lib/paramfit.py index 000aa9c..84eba2b 100644 --- a/lib/paramfit.py +++ b/lib/paramfit.py @@ -16,9 +16,14 @@ from .utils import ( ) logger = logging.getLogger(__name__) -best_fit_metric = os.getenv("DFATOOL_ULS_ERROR_METRIC", "ssr") +dfatool_uls_loss_fun = os.getenv("DFATOOL_ULS_LOSS_FUNCTION", "linear") dfatool_uls_min_bound = float(os.getenv("DFATOOL_ULS_MIN_BOUND", -np.inf)) +if dfatool_uls_loss_fun == "linear": + best_fit_metric = os.getenv("DFATOOL_ULS_ERROR_METRIC", "ssr") +else: + best_fit_metric = os.getenv("DFATOOL_ULS_ERROR_METRIC", "mae") + class ParamFit: """ @@ -222,6 +227,7 @@ def _try_fits( ini, args=(X, Y), xtol=2e-15, + loss=dfatool_uls_loss_fun, bounds=param_function.bounds, ) except FloatingPointError as e: |
